
-1-

Acorn Electron WiFi

User Manual

Roland Leurs

Copyright (c) 2023 Roland Leurs
February 2023

-2-

Acorn Electron WiFi

User Manual

Roland Leurs

Table of contents
Introduction..6
WARNINGS..8

1. Security..8
2. Baud rate changes may brick the ESP8266..8
3. Only for personal, domestic use...8

Hardware description...9
Design considerations..9
Circuit description..11

Installation...14
Software...15

DATE display date...15
DISCONNECT disconnect from a server..15
IFCFG display network information..15
JOIN connect to a wireless network...16
LAP get a list of access points..16
LAPOPT set options for lap command..17
LEAVE disconnect from current network..17
MENU start games menu...17
MODE select operating mode..18
PING ping to a host..18
PRD dump contents of paged ram..18
PRINTER enable WiFi printing...19
REWIND reset UEF pointer..19
SETSERIAL set up serial port A..19
TIME display current time...20
UPDATE check for updates...20
VERSION display firmware information...21
WGET retrieve a file from the Internet..21
WICFS Activate WiCFS..22
WIFI interface control..23
WMENU start games menu...23
TIMEZONE Sets UTC offset...24

-3-

Driver functions...25
Function 00 Soft reset..26
Function 01 Hard reset...27
Function 02 Get firmware information..27
Function 03 Get list of access points..27
Function 04 Join access point..28
Function 05 Quit access point..28
Function 07 Set device mode...28
Function 08 Connect to remote host...29
Function 09 Multiplexing control..29
Function 13 Send data to remote host..30
Function 14 Close connection to host..30
Function 18 Get IP and MAC address..30
Function 23 Get multiplexer channel...30
Function 24 Enable/disable wifi device...31
Function 25 Set options for LAP function..31
Function 26 Set SSL Buffer size..31
Function 27 Set transmission mode...32
Function 28 PING..33

Using the driver: OSWORD &65..33
OSWORD API for time...34
Working with UEF files...35

Downloading an UEF file..35
Starting the WiCFS filing system...36
Rewinding..36
Tape analogies..36

Printing with the WiFi board..37
Connecting a serial printer...37
Printing to a network printer..38
Disable the printer driver...39

WiDFS...40
Installation...40
Mounting and dismounting an image...41
Write access to an image..41
Storage capacity...44

-4-

Known issues with WiDFS..44
Appendix I: part list and circuit diagram..46
Appendix II: recovering a bricked WiFi ROM...47
Appendix III: compatibility..48
Appendix IV: Memory usage...49
Appendix V: License..50

-5-

Introduction
The ESP8266-01 is (literally) a small device with great possibilities. It
enables classic computers and modern micro-controllers to connect to a WiFi
network and transmit data via a simple serial interface. Just like bitd it accepts
a set of AT commands and performs the necessary actions that are needed for
the network communication. The device holds a complete TCP/IP stack, albeit
IPv4 only.

So all you need to connect to a
wireless network is just a standard
serial interface, an ESP8266 and
some software.

When I started this project on my
Acorn Atom I used the serial port
of the Godil and although it
basically worked, data transfers
were mostly not completed. I
never figured out what the reason was, I still suspect my first ESP module
(which was another type) was not quite good.

I decided to start a new project with another, even smaller, device (the one
you see in the picture above) and I also added an extra serial device. For my
Atom 2k18 I could use some additional serial ports since it needs one for
communicating with the on-board Pi-Zero and now also for the WiFi device. I
picked the 16C2552 which is a dual UART (Universal Asynchronous
Receiver and Transmitter) which has two independent communication
channels, a 16 byte input / output buffer (FIFO, first in first out) and can

-6-

 transmit up to 4 Mbps. And most important: it is affordable and available
from reliable suppliers.

For the Atom I wrote a WiFi driver which can be used by user applications
and commands. A basic set of commands include LAP (list access points),
JOIN (join a network), TIME/DATE and WGET (to download a file from a
web server). All these commands use the same driver. And this setup works
nice.

About the time I finished this project the question “Acorn Electron online –
any such hardware” popped up on the StarDot forum. And as I had such
hardware and software for the Atom, I decided to port both to the Electron.

So here it is, the Acorn Electron WiFi module. An easy to install and use way
to connect your Electron to the Internet. I hope you enjoy this device as much
as I do.

A warm “thank you” goes to these people of the StarDot community:

• Hoglet, for testing on a Master, generic testing, fault finding and
creating a menu system.

• DaveH, for generic testing and reviewing the manual and working on
a 3D-printed case.

• MartinB for sharing the sources of UPCFS which made WiCFS
possible.

• Multiwizard for end-user testing and creating a do-it-yourself case.

• Timo for implementing Network Time Protocoll

-7-

WARNINGS

Before I continue I have some important warnings:

1. Security

The Acorn Electron is in no way a secure device, nor is the software for the
WiFi module. When using the commands or driver, usernames and
passwords may be kept in memory.

2. Baud rate changes may brick the ESP8266

The default transmission speed for the ESP8266 is 115,200 baud. Both the
Atom and the Electron can handle data transfers at this speed. Do not try to
change this speed because the ESP8266 might accept your command but does
not always perform it correctly. You might end up with a module that
communicates at an unknown serial speed. The only remedy to fix that is to
flash the device (or replace it, after all, they cost only about £1.00).

3. Only for personal, domestic use

Both the hardware and software are not designed for medical- and health use
nor for mission critical, industrial and automotive purposes. Use it at your
own risk.

-8-

Hardware description
The complete diagram is included at appendix I. I will describe my design
considerations and the components in this chapter.

Design considerations

The Electron is a wonderful, small and very sophisticated computer. To keep
it small and affordable, Acorn used a very unusual method of accessing the
memory. Instead of using 32k x 8 memory chips they used 64k x 4 chips. This
means that accessing the memory by the CPU needs two read cycles of 4 bits.
This is all taken care of by the ULA, from the programmers point of view, it
just behaves like 8 bit memory. A drawback is that accessing the RAM is
slow. I did some tests and even at 1200 baud I suffered lost data from the
serial interface.

Another issue is that the Electron has not much memory. In the lowest text
mode it has only about 20kB of RAM available. This implies that the received
data must be processed and stored as soon as it comes in. Even an 8 MHz
6502 is not fast enough to do all the necessary checks and actions within 80
μs (the time that a complete byte is received at 115,200 baud). So we need a
buffer that is fast and large. There are two ways to add more memory:

• Add sideway RAM in a bank at &8000-&BFFF
This would either imply bank switching during data transfer or add
both RAM and ROM to the bank that is used for the software. The
memory is also limited to a maximum of 16kB. And that is not very
much.

-9-

• Add Paged RAM at &FD00-&FDFF
Acorn reserved a 256 byte page for memory expansion. This memory
is “chopped” in small banks of 256 bytes. With a paged RAM register
the program can select a bank. Since this register is 8 bit wide, we
have 256 pages. The total memory can be 256 x 256 = 65535 bytes:
64kB.
Since this memory is a real 8 bit memory it is large and fast enough.
So I added this type of memory to my module.

The paged RAM register should be both writable and readable. I could do this
by adding an extra buffer that is enabled when a read cycle occurs at &FCFF
(the address of the paged RAM register). But the UART has two scratch pad
registers. These behave like a normal memory address. So I use the scratch
pad register of the A-channel (which is available for generic serial
applications) as a read/write copy of the paged RAM register. The decoding is
simply done in hardware so for a programmer the address &FCFF is just a
normal register that can be written and read.

If your Electron already has paged RAM at &FDxx then you can disable the
memory on the WiFi board by adding a jumper.

To make the WiFi software available without loading it from tape, disk or
memory card I also added an EEPROM to the board. The WiFi is available
directly after powering on the Electron.

Both the RAM and the EEPROM are 128kB and although memory is cheap
these days it is also a pity if we can’t use it to the max. For both memory
chips I connected the Multi Function output of the serial ports to an address
line (A15 of the EEPROM, A16 of the RAM). This way the usable memory
capacity is doubled without any extra hardware. It is important to know that

-10-

as soon as MFA (the extra address line of the EEPROM) is changed, the
sideway ROM banks also change without notifying the operating system. This
can lead to a hanging Electron when the operating system knows that there
was a ROM during boot time. So use this with extreme caution. It is most
unlikely that switching will damage your Electron.

Circuit description

The circuit has the following blocks:

1. Power supply
The board gets its +5V from the edge connector and so it is powered by
the Electron. Therefore J10 should be closed. Normally this is not a
jumper but a fixed wire bridge. It is possible to power the board from an
external power supply, e.g. via an USB smartphone loader but before
mounting the connector you should remove the link in J10!

2. CPLD: Control logic and level shifting
The ESP8266 is a 3.3V device but it is connected to the UART which is a
5V device. This is no issue for the receiving line but the transmitting line
must be converted from 5V to 3.3V. So the RX input of the ESP8266 is
not directly connected to the UART but to the CPLD.

The CPLD also controls the RX and TX LEDs. Since the data transfer is
quite fast, the human eye might miss some visual feedback. The CPLD is
triggered by a level change at each RX and TX input and will light the
according LED for 0.10 seconds.

The most important function of the CPLD is the control logic. Most inputs
are directly taken from the edge connector and converted to the necessary
control signals for accessing the devices on the board.

-11-

3. RAM
The RAM is directly controlled from the Plus-1 (signal: nPGFD). The RD
and WR signals are controlled by the CPLD. Address lines A0-A7 are also
directly connected to the edge connector and A8-A15 are connected to the
paged RAM register. A16 is connected to the MFB output of the UART to
add another bank of 64kB RAM.

Selecting a page is as easy as writing to the paged RAM register. After a
(power on) reset the paged RAM register and the copy in Scratch Pad
Register B are probably out of sync. Before using the paged RAM the
program should synchronize these by simply writing a value to &FCFF.

The onboard RAM can be disabled by closing J9. This disables only the
RAM, the paged RAM register is still in use, just like the shadow copy in
the Scratch Pad Register1.

4. EEPROM
The EEPROM is controlled by the CPLD. However, it is addressed to
&8000-&BFFF and the ROMQA signal is connected to A14. In this setup
it provides two banks of sideway ROM. A15 is connected to MFA which
makes it possible to activate another set of two banks. This should be used
with care, like described in the design considerations.

5. UART: the serial device
The UART is the interface between the CPU and the ESP8266. It has two
independent channels.
Channel A is unused by the WiFi board and can be used as a normal serial
device. J8 has all the standard data and control signals plus an additional
5V. With a small extra interface you can directly connect a level converter
for creating a real RS232 or RS432 interface. The Scratch Pad Register of

1 Note to myself: this disable signal can be connected to pin 1 of the CPLD. This
way the CPLD can also disable the paged RAM register.

-12-

channel A is used as a copy of the paged RAM register; Multi Function
output A is used as an extra address line for the EEPROM (see above).
Channel A is located at &FC38-&FC3F (hence the choice of SPR#A for
the register copy: all lower address lines are ‘1’).

Channel B is exclusively used for the WiFi interface. The RX and TX
lines are for data communication. The other modem control signals are
also used:
* DTR#B → enable/disable the ESP8266
* RTS#B → reset the ESP8266
* MF#B → extra address line for the paged RAM
* RI#B → paged RAM status: enabled or disabled
So it is possible to give the ESP8266 a real hardware reset, just in case it
does not respond to any command. Just toggle the RTS line from high to
low by writing a ‘1’ value to the corresponding bit in the modem control
register. And of course, set is back to a high level by writing a ‘0’ to the
modem control register. In a similar way it is also possible to disable the
ESP8266. Just make the DTR output low by writing a ‘1’ to the
corresponding bit in the modem control register. On a hardware reset of
the UART this register is reset to all ‘0’ so the WiFi module becomes
enabled again. To prevent this, you can write any value to the Line Status
Register. This is unused in the UART device itself but it sets a flag inside
the CPLD. This flag will prevent the CPLD to activate the RESET line to
the UART. By writing any value to the Modem Status Register this flag
will be cleared and reset signals are passed to the UART.

6. ESP8266
The module will be fitted as an add-on to the board. To prevent a physical
clash between the ESP8266 and the Plus-1 it is soldered directly to the
board. Exchanging the ESP8266 will be a bit complicated so remember
not to change the baud rate (see chapter ‘warnings’).

-13-

Installation
Since the module is build and tested it is directly ready for use. Turn off your
Electron. Plug the WiFi board into a free slot of the Plus-1 and power on your
Electron. It should start with a banner like “Acorn Electron WiFi”. A special
WiFi symbol will be displayed whenever the module is enabled. If the WiFi
symbol does not occur you can enable the WiFi module with the command

*WIFI ON

If you don’t see the WiFi banner at all then reinstall the module.

-14-

Software
The ROM contains a set of new * commands and a driver for the ESP8266
module. In the next section I describe the new commands. The driver
functions are described later in this manual. Please not that you cannot access
the driver functions directly; there is an OSWORD call for accessing these
functions from your own applications.

DATE display date

Syntax: *DATE

This commands fetches the current date from the Internet by means of the
NTP protocol. The driver does use the address ntp.time.nl for getting the date.

DISCONNECT disconnect from a server

Syntax: *DISCONNECT

You can use this command to disconnect from a server if the connection stays
open due to an error condition. Most commands do automatically close their
connection to the server but sometimes they stay open. When you get a
message “Already connected” you can use *DISCONNECT to close the
connection.

To disconnect from a wireless network use *LEAVE.

IFCFG display network information

Syntax: *IFCFG

Use this command to show the current assigned IP address and the MAC
address of your ESP8266. This command cannot be used to manually set your
IP configuration.

-15-

JOIN connect to a wireless network

Syntax: *JOIN <ssid> [password]

In order to use the network functions you must first join a WiFi network. Use
this command to join a network. The <ssid> is a required parameter. If you
don’t supply a password on the command line then you will be prompted to
enter the password. Please keep in mind that both the ssid and the password
are case sensitive and that the password might remain in the Electron’s
memory!

If the ssid or the password of your network contains one or more spaces then
you can put them between double quotes, like *JOIN “ACORN WIFI”. You
can type a space when you are prompted for the password. If your network
has no password then you can simply enter an empty string.

The command *JOIN ? will show you to what network you are currently
connected to.

LAP get a list of access points

Syntax: *LAP

This commands shows a list of access points. By default it shows this
information for each access point:

+CWLAP:<ecn>, <ssid>, <rssi>, <mac>, <ch>, <freq offset>, <freq cali>

where
<ecn> = Encryption 0: OPEN, 1: WEP, 2: WPA_PSK, 3: WPA2_PSK, 4:

WPA_WPA2_PSK
<ssid> = Network Id
<rssi> = Signal strength
<mac> = MAC address of access point
<ch> = Channel
<freq offset> = frequency offset of access point in KHz

-16-

<freq cali> = calibration for frequency offset

You can change this information with LAPOPT. The list of networks is
always sorted by signal strength (rssi).

LAPOPT set options for lap command

Syntax: *LAPOPT <option>

The option is a binary value with each bit representing what field will be
shown when you use *LAP:

bit 0 sets whether <ecn> will be shown
bit 1 sets whether <ssid> will be shown
bit 2 sets whether <rssi> will be shown
bit 3 sets whether <mac> will be shown
bit 4 sets whether <ch> will be shown
bit 5 sets whether <freq offset> will be shown
bit 6 sets whether <freq calibration> will be shown

So, for example, *LAPOPT 7 will only show the encryption type, the name
(ssid) and signal strength (rssi) of the available WiFi networks.

LEAVE disconnect from current network

Syntax: *LEAVE

Disconnects you from the wireless network.

MENU start games menu

Syntax: *MENU

This command is obsolete from version 0.27 and has been replaced by
*WMENU.

-17-

MODE select operating mode

Syntax: *MODE <1...3>

The ESP8266 can operate as a WiFi station (client) or as an access point
(server) or both. With the *MODE command you can select the operation
mode:

1 → station mode
2 → SoftAP mode
3 → SoftAP and station mode

The mode is also stored into the device’s flash configuration and will remain
until it is changed. When a new device is first powered on and it won’t
respond to commands it is probably not configured as a station. Setting mode
to 1 will solve that issue.

With *MODE ? you can query the current mode of the device.

PING ping to a host

Syntax: *PING <host or ip-address>

You can test internet connectivity with this command or test whether a host is
reachable. This command will send five “ping” packets and waits for the
response from the remote host. When successful it will display the response
time. If the host is not reachable then you will get a “No response from host”
message. In case that the host does not exist or other failures you will see a
“Host error” message.

PRD dump contents of paged ram

Syntax: *PRD <address> <bank nr>

-18-

PRD stands for “Paged RAM Dump”. This command is used to inspect the
contents of the paged RAM. The address is a 16 bit value with the most
significant byte being the page number and the least significant byte is the
offset within the page.

The bank number is either 0 or 1 and selects the bank that you want to dump.
The current bank number is always saved and restored after the dump
command is finished. You can stop the dump by pressing the <ESC> key.

PRINTER enable WiFi printing

Syntax: *PRINTER N:<printer name or ip-address>
*PRINTER S:baudrate,parity,data bits,stop bits
*PRINTER OFF

This command activates or stops the WiFi printer drivers. It’s still
experimental so it might contain several bugs. See chapter “WiFi printing” for
more information.

REWIND reset UEF pointer

Syntax *REWIND

Resets the pointer of an UEF file to the beginning of the file. See chapter
“Working with UEF files” for more information.

SETSERIAL set up serial port A

Syntax: *SETSERIAL baudrate,parity,data bits,stop bits

The WiFi board has a dual port UART for general purpose usage. With this
command you can setup the serial interface. Parameters are:

-19-

baudrate any (usual) baud rate between 300 and 115,200 baud
parity O(dd), E(ven), N(one), 1 or 0 sets the parity
data bits use 5, 6, 7 or 8 for the word length
stop bits use 1 or 2 for the number of stop bits

TIME display current time

Syntax: *TIME

Like the *DATE command, you can also query the current time. See *DATE
for additional information.

UPDATE check for updates

Syntax: *UPDATE [-R]

To facilitate easy updates of the Electron WiFi ROM you can use the
*UPDATE command. If there is a newer version of the ROM available then
you can download and install it with a single key press. When a newer version
is found on the server then you will be prompted “There is an update
available. Do you want to install it (y/N/R)?”. To install the update press ‘y’
(in lower case!) to start the update. Then, the newer ROM image will be
downloaded and if the CRC16 of the downloaded image matches the CRC16
on the server then the EEPROM (only the WiFi part) is erased. After erasing,
the new version will be “burned” into the EEPROM. Then routine ends with a
simulated hard reset of the Electron to re-initialize the new ROM.

Warning: the new version will be downloaded in the memory area &2000 -
&5FFF. So save any data before downloading the update!

Do not power off or interrupt the update process as this might leave your
ROM in an unusable state. If you brick your ROM then see appendix 2 for a
possible fix.

-20-

Please note that this software does not support any kind of update of the
ESP8266 module, nor can the CPLD be updated with this tool.

If you use the optional parameter -R you will see a text file with the release
notes for the latest versions. This overview is also shown when you press R
after the question if you want to update. With the -R option the ROM will not
be updated.

VERSION display firmware information

Syntax: *VERSION

This command retrieves the firmware version of the ESP8266 module.

WGET retrieve a file from the Internet

Syntax: *WGET [-T X U A P S] <url> [load address]

This tool downloads a file from a web server and either displays it on the
screen (for example a text file) or stores it in the Electron’s memory.

The tool has three parameters. The first one is an optional switch to indicate
the file type. You may only specify one of these switches:

-T treat the file as a text file and display it on the screen after
downloading the file. It will not be stored in the Electron’s main
memory.

-X this is the same as -T but it uses the code &0A as newline. Suitable to
display Linux/Unix files.

-A the file will be downloaded into the Electron’s memory and has an
ATM file header. If no load address is specified on the command line,
the file will be stored on the load address in the header.

-21-

-P similar to the -A option, but now the file has an Atom-in-PC header. If
no load address is specified on the command line, the file will be
stored on the load address in the header.

-U the file is an UEF file. This file will be loaded into the second 64k
bank of the paged RAM.

-S the file a a ROM file and will be loaded directly into sideways RAM.
You should specify the RAM bank number (0 – F) as the last
parameter; the default is bank 0.

The URL consists of a number of components:

protocol (required, http and https are supported
 protocols)

hostname (required)

port number (optional)

path and filename (optional)

For example: http://acornlectron.nl:8080/path/to/file.htm

Although you can specify https as a protocol and the ESP8266 will connect to
port 443 of the web server, it does not retrieve any data. This is probably
related to either outdated encryption protocols or the ESP8266 might not
support SNI.

The last parameter, load address, will override the load address that is in a
header. If this parameter is omitted and the file has no header then it will be
loaded at the current PAGE.

WICFS Activate WiCFS

Syntax: *WICFS

-22-

WiCFS is an emulated cassette filing system using an UEF file as data source.
This commands sets PAGE to &E00 and sets vectors FILEV, FSCV, FINDV
and BGETV. See chapter “Working with UEF files” for more information.

WIFI interface control

Syntax: *WIFI [on | off | sr | hr]

This command accepts one of these parameters:

on enables the WiFi device

off disables the WiFi device

sr performs a software reset of the ESP8266 by
issuing an AT+RST command

hr performs a hardware reset of the ESP8266 by
toggling the RTS line of the UART

WMENU start games menu

Syntax: *WMENU

This command downloads a menu program to &E00 and starts it. So make
sure your PAGE is at &E00, if necessary disable your DFS, MMFS etc.

A list of games is retrieved from acornelectron.nl. You can browse through
this list with the cursor up/down keys or start searching for a title by pressing
the / key. The selected game is loaded as an UEF file. There are more than
700 games files available but not all files are tested and working. This
command replaces the *MENU command in the ROM versions up to 0.26.

-23-

TIMEZONE Sets UTC offset

Syntax: *TIMEZONE <offset from UTC>

This command sets the offset from the UTC to display date and time in the
local time. The range is -12 to 14 hours. Fractional time offset are currently
not supported. The abbreviation for this command is *TZ

-24-

Driver functions

The communication with the ESP8266 is done with a few standard functions.
So there is no need to use any of the AT commands in user applications. If you
write an application that needs some features that are not in the driver then
please report this and it can be added to the driver. This way we can assure
compatibility whenever another WiFi device will be used.

The driver supports these functions2:

Function AT command Short Description

00 AT+RST Initializes the ESP8266 (soft reset)

01 n/a Hard reset

02 AT+GMR Get firmware information

03 AT+CWLAP Get list of access points

04 AT+CWJAP Join access point

05 AT+CWQAP Quit access point

06 Not implemented Set access point parameters

07 AT+CWMODE Set device mode

08 AT+CIPSTART Connects to host

09 AT+CIPMUX Activate multiplex (up to five channels)

10 Not implemented List joined interfaces

11 Not implemented Set buffer address (old Atom driver)

12 AT+CIPSTATUS Get TCP/IP connection status

2 Well, supports almost all of these functions. Some functions are not implemented
yet.

-25-

Function AT command Short Description

13 AT+CIPSEND Send data to remote host

14 AT+CIPCLOSE Close connection to remote host

15 Not implemented Set as server

16 Not implemented Set time out

17 AT+CIOBAUD Get baud rate (set baud rate is not
implemented)

18 AT+CIFSR Get IP and MAC address

19 Not implemented Get firmware update

20 IPD Transfer data

21 AT+CSYSWDTEN
ABLE

Enable watchdog timer

22 AT+CSYSWDTDI
SABLE

Disable watchdog timer

23 n/a Get multiplexer channel

24 n/a Enable/disable WiFi device

25 AT+CWLAPOPT Set options for LAP function

26 AT+CIPSSLSIZE Set SSL Buffer size

27 AT+CIPMODE Set transmission mode

28 AT+PING Perform ping command

29 n/a Sets UTC offset

Function 00 Soft reset

Parameters: none

-26-

This function sends a software reset command to the WiFi device. The device
will reinitialize itself.

Function 01 Hard reset

Parameters: none

This function performs a hardware reset by toggling the RTS line from high to
low and back to high.

Function 02 Get firmware information

Parameters: none

This function retrieves the firmware version from the WiFi device.

Function 03 Get list of access points

Parameters: none

This function retrieves a list of all wireless SSID’s in the neighborhood. The
response is like:

+CWLAP:<ecn>, <ssid>, <rssi>, <mac>, <ch>, <freq offset>, <freq cali>

where
<ecn> = Encryption 0: OPEN, 1: WEP, 2: WPA_PSK, 3:

 WPA2_PSK, 4: WPA_WPA2_PSK
<ssid> = Network Id
<rssi> = Signal strength
<mac> = MAC address of access point
<ch> = Channel
<freq offset> = frequency offset of access point in KHz
<freq cali> = calibration for frequency offset

-27-

See function 25 for LAP options. The ESP8266 might receive additional
parameters for the AT+CWLAP command but these are not supported by this
driver.

Function 04 Join access point

Parameters: X points to the high byte of a parameter block
Y points to the low byte of a parameter block

The parameter block holds two adjacent strings which are terminated with a
&0D byte. The first string is the SSID of the access point and the second
string is the password for that access point. Both strings should not contain
quotes and are case sensitive.

On success the WiFi device is connected to the wireless network and gets an
IP address. This connection is permanently stored in the device so it connect
automatically to this network after the next (power on) reset.

Function 05 Quit access point

Parameters: none

This functions disconnects the WiFi device from the wireless network.

Function 07 Set device mode

Parameters: X = hi byte param block
Y = low byte param block

The ESP8266 has three operation modes:
1 → station mode
2 → SoftAP mode
3 → SoftAP and station mode

-28-

Note that these values are not binary values but the ASCII values.

X and Y point to a parameter block in memory with the requested mode,
terminated with &0D. If the parameter block is an empty string it will query
the device for the current mode.

The mode is also stored into the device’s flash configuration and will remain
until it is changed. When a new device is first powered on and it won’t
respond to commands it is probably not configured as a station. Setting mode
to 1 will solve that issue.

Function 08 Connect to remote host

Parameters: X = hi byte param block
Y = low byte param block

The parameter block contains the following information, presented as strings
terminated by &0D:
<link ID> (but only when multiplexing is active)
<type> (UDP, TCP or SSL)
<remote IP> (or hostname)
<remote port>

No quotes are allowed around these parameters. On success the device
responds with CONNECTED crlf crlf OK crlf crlf. On failure it will respond
with an error message, such as already connected or DNS failure etc.

Function 09 Multiplexing control

Parameters: Y = multiplexing on (1) or off (0)

This function initializes the multiplex workspace for the driver and sends the
multiplexer value to the ESP8266. This value might be both the ASCII value
or the binary value.

-29-

Function 13 Send data to remote host

Parameters: X points to data block in zero page
Y = channel (note to myself: this is not implemented
yet!)

This data block holds two addresses:
• two bytes start address of data (low byte / high byte)
• two bytes length (low byte / high byte)

Function 14 Close connection to host

Parameters: Y = channel (only when multiplexing is
active, otherwise ignored)

Some servers or services close the connection after responding to function 13.
So it is advised to always call this function after a transfer has completed. If
the connection is already closed by the server then this function will end with
an error that might be ignored.

Function 18 Get IP and MAC address

Parameters: none

This function retrieves the current IP address and MAC address of the
ESP8266 device.

Function 23 Get multiplexer channel

Parameters: none

You can use this function to request a free channel from the driver.
Multiplexing must be enabled with function 09. This function responds with
one of the following:

-30-

Carry cleared: Y = 255; multiplexing is switched off
Carry set: Y = 255: no free channel
Carry set: Y <> 255: assigned channel number

Function 24 Enable/disable wifi device

Parameters: X = 0: disable WiFi, X = 1: enable WiFi

This function causes the UART to pull DTR low and so it disables the
ESP8266. It also configures the CPLD to prevent that the UART is reset after
pressing the BREAK key. So, if WiFi is disabled it will be disabled even after
a (hard) reset. After a power off/power on reset it will be enabled again.

Function 25 Set options for LAP function

Parameters: to be determined….

This sets the options which fields will be returned by the LAP function:

bit 0 sets whether <ecn> will be shown
bit 1 sets whether <ssid> will be shown
bit 2 sets whether <rssi> will be shown
bit 3 sets whether <mac> will be shown
bit 4 sets whether <ch> will be shown
bit 5 sets whether <freq offset> will be shown
bit 6 sets whether <freq calibration> will be shown

Function 26 Set SSL Buffer size

Parameters: none

This function sets the SSL buffer size to a fixed value of 4096.

-31-

The “receive data” routine is written in a way that it does not use any main
memory of the Electron. It avoids instructions that change the stack (like JSR
and PHA). So it only uses the ROM and paged RAM. This way, the CPU can
run at full 2 MHz and is fast enough to read and store the incoming data. For
graphical modes 0 to 3 it also disables interrupts, since these will make the
CPU access the stack. In modes 4 to 6 the UART FIFO is large enough to
buffer the incoming data during the execution of the interrupt service routine.
So the WiFi functions can be used in any graphics mode.

Function 27 Set transmission mode

Parameters: X = hi byte param block
Y = low byte param block

UART-WiFi pass-through mode (transparent transmission) can only be
enabled in TCP single connection mode or UDP of which remote IP and port
won’t change (parameter <UDP mode> is 0 when using command
"AT+CIPSTART" to create a UDP transmission).

During UART-WiFi pass-through transmission, if it is TCP connection and the
TCP connection breaks, ESP8266 will keep trying to reconnect until "+++" is
inputed to quit from transmission. After "+++",
please wait at least 1 second before sending next AT command.
If it is a normal TCP transmission and TCP connection breaks, ESP8266 will
prompt " [<link ID>,] CLOSED" , and won’t try to reconnect. Users can call
"AT+CIPSTART" to create a connection again if it’s needed.

The parameter block contains a string holding the new mode; this is a single
character string with a terminating &0D character:

Value 0: normal operating mode
Value 1: pass-through mode

Both values are the ascii characters for 0 and 1.

-32-

Function 28 PING

Parameters: X = hi byte param block
Y = low byte param block

The parameter block contains a string with the hostname or an IP address of
the host you want to ping. This string is terminated by &0D.
The result of the ping is one of the following:
+<time> the response time in ms
+timeout a time-out occurred
error a generic message that ping failed

Using the driver: OSWORD &65

Since you cannot access the WiFi driver functions directly, you can use this
operating system call to get access to the driver.

Like any other OSWORD call the A register contains the function number
(&65) and the X (lsb) and Y (msb) registers point to a parameter block. This
parameter block is always three bytes and contains the parameters for the
driver functions:

first byte: the driver function number (A)
second byte: the value for the X register
third byte: the value for the Y register

Example:
You want to connect to a wireless network. So you store the ssid and
password in memory at &680. The parameter block will be stored at &600.

 To connect to the network do:

LDA #&04 \ load driver function

-33-

STA &600 \ write to first byte of driver
parameter block

LDA #&06 \ load X value for function
STA &601 \ write to second byte of driver

parameter block
LDA #&80 \ load Y value for function
STA &602 \ write to third byte of driver

parameter block

LDX #&00 \ load X register with low byte of
parameter block

LDY #&06 \ load Y register with high byte of
parameter block

LDA #&65 \ load OSWORD function number
JSR &FFF1 \ do OSWORD call

OSWORD API for time
To make it possible to use time in applications an API is provided to get the
time. A OSWORD implementation is provided. To provide some sort of
compatibility OSWORD 14 is implemented (Read Real-Time clock). Only
function codes 1 and 9 are implemented. The big difference is that time is not
provided in BCD code but it is provided in binary at this moment.

-34-

Working with UEF files
Unified Emulator Format (UEF) is a container format for the (un)compressed
storage of audio tapes, ROMs, floppy discs and machine state snapshots for
the 8-bit range of computers manufactured by Acorn Computers. First
implemented by Thomas Harte's ElectrEm emulator and related tools, it is
now supported by major emulators of Acorn machines. Martin Barr wrote
UPCFS which is a tool that reads UEF files from a PC using an UPURS
connection.

UEF attempts to concisely reproduce media borne signals rather than simply
the data represented by them, the intention being an accurate archive of
original media rather than merely a capability to reproduce files stored on
them. A selection of metadata can be included, such as compatibility ratings,
position markers, images of packaging and the text of instruction manuals.
UPCFS only supports file data.

With WiCFS I ported UPCFS to the WiFi ROM. Only a few changes were
necessary, mainly fetching the data from memory rather than from a serial
connection.

Downloading an UEF file

Before you can use an UEF file you have to download it from a (local) web
server. Use the *WGET command for this with the -U switch, for example:

*WGET -u http://acornatom.nl/ddd.uef

This will download the UEF file and store it in the second bank of 64k paged
RAM. At the moment only uncompressed files are supported. The
uncompressed UEF should not exceed 65533 bytes (the last two addresses are
used to store the length of the UEF file).

-35-

Starting the WiCFS filing system

After loading the UEF file you can start the WiCFS filing system with the
command:

*WICFS

This command activates *TAPE but changes the vectors FILEV, FSCV,
FINDV and BGETV to its own routines. Commands like *CAT, *LOAD and
*RUN are intercepted and redirected to the WiFi ROM. Page is set to &E00
as this is required for many games.

Also the read-pointer is reset to the beginning of the data.

Rewinding

Just like a real tape you might sometimes need to “rewind” the data in
memory. Of course we are not moving the data around but we have to move
the read-pointer to the beginning of the data in memory.

After you have *CAT-ted an UEF file you must reset the read-pointer to the
beginning of the file before you can load a file into the main memory of your
Electron. That’s all what the

*REWIND

command does.

Tape analogies

To place a tape into the recorder: *WGET -U <url>

Switch on the tape recorder: *WICFS

Rewind the tape: *REWIND

-36-

Just like tapes, you might switch to another UEF file by issuing another
WGET -U command. And just like real tapes you have to rewind it with
*REWIND before accessing files otherwise you might get read errors.

You can compare the read-pointer at the UEF with the tape position just below
the magnetic head of your cassette recorder.

Printing with the WiFi board
Note: this functionality is still under development. Please consider this
chapter as preliminary information.

The WiFi board has two interfaces to connect a printer:

1. The serial port A of the UART
2. The network interface

Keep in mind that modern printers need both a CR and LF for a new line. Old
dot matrix printers often needed only CR. To enable a line feed use the
command *FX 6,0

Connecting a serial printer

To connect a serial printer you need an additional adapter to convert the TTL
logic signals to real RS-232 levels in both directions. The serial port on the
board has a +5V pin for this purpose. Such a conversion board is not covered
in this manual.

To enable the serial printer you start with the command:

*PRINTER S:<baud rate>,<parity>,<data bits>,<stop bits>

where

-37-

baud rate any (usual) baud rate between 300 and 115,200 baud
parity O(dd), E(ven), N(one), 1 or 0 sets the parity
data bits use 5, 6, 7 or 8 for the word length
stop bits use 1 or 2 for the number of stop bits

This command only enables the printer driver but it does not select the serial
printer. To select the serial printer you use the *FX 5,6 command. The number
6 is the hard coded printer ID in the WiFi ROM for both the serial and
network printer. After you selected the serial printer you can start printing
with VDU 2 (or CTRL+B) and stop printing with VDU 3 (or CTRL+C).

The serial printer drivers is not tested and lacks any kind of handshake. It
simply outputs all the data to the serial port and the printer should be able to
receive and buffer the data. For fast printers or printers with a large buffer this
won’t be an issue, but a slow dot matrix printer might suffer data loss.

If you need any kind of handshake, we’ll have to add it to the driver. Both
software handshake with XON/XOFF and hardware handshake with
CTS/RTS can be implemented.

Printing to a network printer

To use a network printer you need a printer that is compatible with the HP
JetDirect interface. Most Hewlett Packard network enabled printers have such
an interface but also many other manufacturers have printers with a
compatible interface.

This interface accepts raw data and will print in a standard courier font. By
sending the appropriate PCL commands you can also use more advanced
features of your printer. PCL is not covered in this manual.

-38-

Printing over SMB (for printing to a shared printer on a Windows host) or
LPD is not supported; printing goes directly to the network attached printer.

Before you can print to a network printer you have to enable the printer driver
with:

*PRINTER N:<printer name or IP address>

This command only enables the printer driver but it does not select the
network printer. To select the network printer you use the *FX 5,6 command.
The number 6 is the hard coded printer ID in the WiFi ROM for both the
serial and network printer. After you selected the network printer you can start
printing with VDU 2 (or CTRL+B) and stop printing with VDU 3 (or
CTRL+C).

While printing the ESP8266 module is put into pass-through mode. Every
byte received over the serial interface is directly passed on to the network. A
disadvantage of pass-through mode is that it is not supported with
multiplexing active. So you cannot use the WiFi commands during printing. If
the printer is not active, the WiFi command can be used.

So, this won’t print the book of Winnie the Pooh:

*PRINTER N:OKI.RLS.TRIPPLER.NL
*FX 5,6
VDU 2
*WGET -X http://acornelectron.nl/winnie-the-pooh.txt
VDU 3

Disable the printer driver

To disable the printer driver, simply type: *PRINTER OFF

-39-

WiDFS

WiDFS is a separate ROM that operates independently from the WiFi ROM.
This ROM enables you to mount a DFS image on a web server or NAS
storage over HTTP. With a little supporting PHP script and a modification in
the .htaccess file of an Apache web server you can even mount an image in
read/write mode.

The temporary storage of received data and the WiDFS workspace are stored
in paged RAM bank 1. So PAGE remains at &E00. There’s also a cached
copy of each catalogue in this workspace. You can mount up to four images at
the same time and access them as drive 0 … 3. Every read operation on the
catalogue is performed on the cached copy to improve speed. When you read
data from the virtual disc the complete block of data is first downloaded into
the paged RAM buffer and later copied to the destination RAM, either into the
lower memory area or into one of the file buffers in the paged RAM.

Installation

Although the WiFi ROM and WiDFS ROM operate independently from each
other you need to update WiFi ROM to version 0.26 or higher. This version
solves some conflicts in zero page usage and other memory areas.

After the update you can download the WiDFS ROM into sideways RAM
with the *WGET -S command:

*WGET -S HTTP://ACORNELECTRON.NL/WIDFS/WIDFS.ROM 2

(replace the number 2 by an available sw ram bank number !)
Press break

-40-

If you want to program the ROM into the second bank of the EEPROM on the
WiFi board continue with the next steps (this will erase the contents in the
EEPROM in this bank!):

*MOUNT 0 HTTP://ACORNELECTRON.NL/WIDFS/WIDFSINSTALL.SSD

Press shift+break

Mounting and dismounting an image

Before you can access an image you will need to mount it. The syntax of the
mount command is:

*MOUNT <drv> <url>

where <drv> is the drive number in the range from 0 to 3 and <url> is the
location on the web server or your storage device. During the mount process
the file is opened and the first 512 bytes are downloaded, assuming this is the
catalogue. The current version does not check if the mounted images is really
a DFS image.

Use *UMOUNT <drv> to unmount a disc image. Using *MOUNT without
parameters will show you a list of the four virtual drives and the mounted
images for each drive.

After the image is mounted you can use most of the regular DFS commands
to access files. Commands for disc management (like compact, copying,
formatting and verifying) are not supported.

Write access to an image

In most cases you will only need read access, especially when your images
are stored on a public web server. But you can make these images writeable
with a little extra configuration.

Step one: install the ssdwrite.php script on your web server

-41-

$headers = apache_request_headers();
$file = basename($_SERVER['REQUEST_URI']);
 $fh = fopen($file, 'rb+');
 if ($fh) {
 if (isset($headers['X-Write-Range'])) {
 $range = preg_split('/=/', $headers['X-Write-Range']);
 list($start, $end) = preg_split('/-/', $range[1]);
 $length = intval($end) - intval($start);
 fseek($fh, $start, SEEK_SET);
 fwrite($fh, $data, $length);
 header('X-Write-Status: 0 OK');
 } else {
 header('X-Write-Status: 1 ERROR Missing or invalid range');
 header('Content-length: 512');
 $fh = fopen($file, 'rb');
 echo fread($fh, 512);
 }
 fclose ($fh);
 } else {
 header('X-Write-Status: 2 ERROR not writable');
 header('Content-length: 512');
 $fh = fopen($file, 'rb');
 echo fread($fh, 512);
 fclose ($fh);
 }
} else {
 header('X-Write-Status: 3 ERROR not file');
}

This is a very basic version of the script. You can download the complete file
from https://acornelectron.nl/WIDFS/ssdwrite.tgz

Step two: modify the .htaccess file on your web server. Add the following
lines:

RewriteEngine On
RewriteCond %{REQUEST_METHOD} POST
RewriteRule . ssdwrite.php [L]

-42-

After you have configured your web server the *MOUNT command will
automatically detect the read/write status of the image and mount it
accordingly. Various commands will check the mount status before doing their
job and throw an error if the image is not writeable.

Some notes on access control:
1. To prevent abuse of the ssdwrite script it is strongly advised to

rename this to a random name like regiuzfots.php or whatever. Use
this name also in your .htaccess file.

2. By default the only access control is the web host file system access
control. You can make the image read only by removing the write
permissions. This is only necessary when you are mixing both
writeable and read-only images in one directory.

3. Feel free to play with Allow and Deny directives in your .htaccess file
to grant read or write permissions to public users. You can also add
some IP based access control in the PHP script so that some users
have write access to the images and others will only be able to read
the images.

A word about the performance

You will notice that the read performance is quite good. Games like
Elementum, Manic Miner and Electrobots will load within a few seconds. For
each disc access there’s one request to the web server because the catalogue is
cached.

Writing to an image is quite slow. This is because each write request needs to
update the catalogue and the data in the image. These are two requests to the
web server. Besides that, the uploaded file data has to be split in chunks of 2
kB. This is a requirement of the ESP8266 module.

-43-

Storage capacity

WiDFS is based on Acorn’s DFS, so you can have up to 31 files in an image.
The maximum sector number is &3FF (1023) and each sector can hold 256
bytes. So the maximum disk image size is 262,144 bytes (256 kB). You are
not restricted to the limits of physical discs, like 100 or 200 kB.

The file length field for each file is 18 bits. This makes the maximum file
length 261,632 bytes. Thats almost 256 kB because the first 512 bytes of the
disk image are reserved for the catalogue.

Known issues with WiDFS

In the current version there are some limitations:
• Your web server needs to support partial HTTP requests; most

modern web servers do support them.
• Write access is (probably) limited to Apache because of using

the .htaccess files. On other web server software like NGINX,
LightHTTP, IIS etc you will have to figure out how to redirect POST
requests to the PHP script.

• The software has not been tested on an Electron with a Plus3 or any
other physical disc system. It is certainly not possible to copy images
to discs or the other way round with the current software.

• The TUBE or any other second processor are also not supported yet.
Since WiDFS is based on AcornDFS and RamFS (Datacentre) it is
likely that a future version will have support support for a second
processor.

• Please note that both WiCFS (for reading UEF files) and WiDFS both
use paged RAM bank 1 and thus they cannot be used at the same
time. Loading an UEF file will destroy your disc images without
warning.

• Do not store personal information in disc images on a public web
server. Both the communication and the storage lack any way of
encryption!

-44-

Some images to start with are:

HTTP://ACORNELECTRON.NL/WIDFS/ATMAN.SSD
HTTP://ACORNELECTRON.NL/WIDFS/ELECTROBOTS.SSD
HTTP://ACORNELECTRON.NL/WIDFS/ELEMENTUM.SSD
HTTP://ACORNELECTRON.NL/WIDFS/MANICMINER.SSD
HTTP://ACORNELECTRON.NL/WIDFS/OUTBREAK.SSD
HTTP://ACORNELECTRON.NL/WIDFS/TESTIMG.SSD

You can mount the last image in read-write mode.

-45-

Appendix I: part list and circuit diagram

-46-

Designator Designation
C10,C9,C8,C5,C4,C3,C2,C1 100nF
C6 47nF
C7 33µF
D6,D5,D4,D3,D2,D1 LED
H4,H3,H2,H1 MountingHole
J1 NMI / IRQ
J10 Conn_01x02
J3 A = Far side | B = near side
J4 USB_B_Micro
J5 JTAG
J6,J2 Conn_01x03
J7 ESP8266-01
J8 Serial Port A
J9 RAM disable
Q2,Q1 BC850
R10,R9,R8,R7 3k3
R14,R12 1.8kΩ
R16,R5,R1 180Ω
R18,R17,R13,R11 3.3kΩ
R22,R4,R3,R2,R15,R19,R20,R21,R23,R24,R25 4.7kΩ
R6 2kΩ
U1 XC9572XL-VQ44
U2 ST16C2552
U3 LM3940IMP-3.3
U4 SST39SF010
U5 74HCT574D
U6 IS62C1024AL

Appendix II: recovering a bricked WiFi ROM

In case the update process is interrupted or crashed, you can manually try to
re-program the ROM. You need three files, that you can download from a web
server:

http://acorn electron .nl/wifi/elkwifi-latest.bin
this is the 16kB ROM image, load at &2000

http://acorn electron .nl/wifi/erase.bin
this is an erase tool, load at &1E00

http://acorn electron .nl/wifi/program.bin
this is a programming tool, load at &1F00

It’s your own challenge to get these files into your Electron’s memory without
a WiFi connection. At some point in time I will provide a SSD image that can
be opened with one of the many MMC storage solutions.

If these three files are loaded into your Electron’s memory do:

CALL &1E00 to erase the EEPROM bank (break may be
needed after flashing)

CALL &1F00 to program the latest image into the EEPROM
bank

Two important remarks:

1. Load all the three files into the Electrons memory if you need to
transfer them over WiFi

2. This procedure only works with the cartridge in the rear slot of the
Plus-1

-47-

http://acornatom.nl/atomwifi/program.bin
http://acornatom.nl/atomwifi/program.bin
http://acornatom.nl/atomwifi/program.bin
http://acornatom.nl/atomwifi/erase.bin
http://acornatom.nl/atomwifi/erase.bin
http://acornatom.nl/atomwifi/erase.bin
http://acornatom.nl/atomwifi/elkwifi-latest.bin
http://acornatom.nl/atomwifi/elkwifi-latest.bin
http://acornatom.nl/atomwifi/elkwifi-latest.bin

Appendix III: compatibility
This cartridge is tested with an Acorn Electron and a standard Acorn Plus-1
expansion module. It is also tested with an Acorn Plus-1 and a Pres Plus-1
ROM. Both configurations work perfectly.

Known issues:

• Due to a design flaw in the NEW AP6 the data transfer gets corrupted
in transfers greater than ± 200 bytes. There is a hardware fix
described on StarDot at https://stardot.org.uk/forums/viewtopic.php?
f=3&t=23588&p=338410 This concerns boards AP6 1Vx and 1V2.

• The CPLD is configured to detect whether it is installed in a BBC
Master computer. However, the software does some access to page
&FExx so there are some compatibility issues with this card in a BBC
Master computer. For Masters I recommend the 1 MHz bus WiFi
(a.k.a. BeebWiFi).

• Neither is any compatibility tested with a disc system, the Tube and
Econet interface. They probably won’t work correctly together.

• This board clashes also with the AP5 extension for the Electron as
both boards drive (part of) page &FC and page &FD.

• Not all games are compatible with WiCFS. A list of known working
games is at: https://www.retro-kit.co.uk/page.cfm/content/UPCFS-
Working-titles/

You can send your feedback to: roland@acornatom.nl

-48-

https://stardot.org.uk/forums/viewtopic.php?f=3&t=23588&p=338410
https://stardot.org.uk/forums/viewtopic.php?f=3&t=23588&p=338410

Appendix IV: Memory usage

The hardware uses the following addresses in the Electron memory map:

&FC30-&FC37 UART Port B (used by WiFi)

&FC38-&FC3E UART Port A (available to user)

&FC3F read back of paged RAM register

&FCFF paged RAM register

&FD00 - &FDFF paged RAM

The software uses the following addresses:

&0090 - &0096 permanent storage in page 0

&00B0 - &00CF temporary workspace in page 0

&0100 - &0140 temporary workspace for error handling

&0398 - &03FF used by WiCFS

&07A4 - &07FF used by WiCFS

&0900 - &0AFF temporary workspace for WiFi commands

&8000 - &BFFF sideway ROM in either slot 0 or 2

-49-

Appendix V: License
The license for this Work (i.e. both the hardware and software) are simple:

1. You have the right to use the Work in any way you want for non-
commercial use. Commercial use is considered when you integrate
the Work into your own products or replicate the Work and sell it.

2. You may create your own hardware and software based on the Work
for non-commercial use. However, for deviated projects you must use
the same license.

Warranties and Disclaimer

Except as required by law, the Work is licensed by the Licensor on an "as is"
and "as available" basis and without any warranty of any kind, either express
or implied.

Limit of Liability

Subject to any liability which may not be excluded or limited by law the
Licensor shall not be liable and hereby expressly excludes all liability for loss
or damage howsoever and whenever caused to You.

-50-

	Introduction
	WARNINGS
	1. Security
	2. Baud rate changes may brick the ESP8266
	3. Only for personal, domestic use

	Hardware description
	Design considerations
	Circuit description

	Installation
	Software
	DATE display date
	DISCONNECT disconnect from a server
	IFCFG display network information
	JOIN connect to a wireless network
	LAP get a list of access points
	LAPOPT set options for lap command
	LEAVE disconnect from current network
	MENU start games menu
	MODE select operating mode
	PING ping to a host
	PRD dump contents of paged ram
	PRINTER enable WiFi printing
	REWIND reset UEF pointer
	SETSERIAL set up serial port A
	TIME display current time
	UPDATE check for updates
	VERSION display firmware information
	WGET retrieve a file from the Internet
	WICFS Activate WiCFS
	WIFI interface control
	WMENU start games menu
	TIMEZONE Sets UTC offset

	Driver functions
	Function 00 Soft reset
	Function 01 Hard reset
	Function 02 Get firmware information
	Function 03 Get list of access points
	Function 04 Join access point
	Function 05 Quit access point
	Function 07 Set device mode
	Function 08 Connect to remote host
	Function 09 Multiplexing control
	Function 13 Send data to remote host
	Function 14 Close connection to host
	Function 18 Get IP and MAC address
	Function 23 Get multiplexer channel
	Function 24 Enable/disable wifi device
	Function 25 Set options for LAP function
	Function 26 Set SSL Buffer size
	Function 27 Set transmission mode
	Function 28 PING

	Using the driver: OSWORD &65
	OSWORD API for time
	Working with UEF files
	Downloading an UEF file
	Starting the WiCFS filing system
	Rewinding
	Tape analogies

	Printing with the WiFi board
	Connecting a serial printer
	Printing to a network printer
	Disable the printer driver

	WiDFS
	Installation
	Mounting and dismounting an image
	Write access to an image
	Storage capacity
	Known issues with WiDFS

	Appendix I: part list and circuit diagram
	Appendix II: recovering a bricked WiFi ROM
	Appendix III: compatibility
	Appendix IV: Memory usage
	Appendix V: License

