
Desktop Tools

ii

Copyright © 1994 Acorn Computers Limited. All rights reserved.

Updates and changes copyright © 2002 Castle Technology Ltd. All rights reserved.

Updates and changes copyright © 2014-2020 RISC OS Open Ltd. All rights
reserved.

Issue 1 published by Acorn Computers Technical Publications Department.

Issue 2 published by Castle Technology Ltd.

Issues 3-5 published by RISC OS Open Ltd.

No part of this publication may be reproduced or transmitted, in any form or by
any means, electronic, mechanical, photocopying, recording or otherwise, or
stored in any retrieval system of any nature, without the written permission of the
copyright holder and the publisher, application for which shall be made to the
publisher.

The product described in this manual is not intended for use as a critical
component in life support devices or any system in which failure could be expected
to result in personal injury.

The product described in this manual is subject to continuous development and
improvement. All information of a technical nature and particulars of the product
and its use (including the information and particulars in this manual) are given by
the publisher in good faith. However, the publisher cannot accept any liability for
any loss or damage arising from the use of any information or particulars in this
manual.

If you have any comments on this manual, please complete the form at the back of
the manual and send it to the address given there.

All trademarks are acknowledged as belonging to their respective owners.

Published by RISC OS Open Ltd.

Issue 1, December 1994 (Acorn part number 0484,230).
Issue 2, October 2002 (updates by Castle Technology Ltd).
Issue 3, October 2014 (updates by RISC OS Open Ltd).
Issue 4, April 2015 (updates by RISC OS Open Ltd).
Issue 5, January 2021 (minor corrections).

Contents

Introduction 1

About this manual 2
Conventions used 3

Part 1 - Getting started 5

Installing Acorn C/C++ 7
Hardware and OS requirements 7
Installation 7
Environment variables and Acorn C/C++ 8

Working with desktop tools 11
Desktop tools 11
Working styles 14
Where to go from here 14

Part 2 - Interactive tools 17

Desktop debugging tool 19
Overview 19
About debuggers 20
Preparing your program 21
Starting a debugging session 23
Specifying program objects 26
Execution control 33
Program examination and modification 41
Options and other commands 46
An example debugging session 50

Make 59
Invoking Make 59
Using Make 60
Makefile format 69
Programmer interface 71
iii

Contents
SrcEdit 73
Starting SrcEdit 73
SrcEdit menus 74
Printing a SrcEdit file 88
Laying out tables – the Tab key 89
Reading in text from another file 90
Bracket Matching 90
Throwback 91
Saving Options 95
The SrcEdit icon bar menu 95
SrcEdit task windows 97
Keystroke equivalents 100

General features 103
The Application menu 104
The SetUp box 105
Output 107

Part 3 - Non-interactive tools 111

A8Time 113
Background to pipelines and scheduling 113
Using A8Time 115
The SetUp dialogue box 115
The Application menu 116
Example output 116
Command line interface 117

ABC 119

AMU 121
Starting AMU 121
The Application menu 123
Example output 123
Command line interface 124

DecAOF 127
The SetUp dialogue box 127
The Application menu 128
Example output 129
Command line interface 129
iv

Contents
Diff 131
The SetUp dialogue box 131
The Application Menu 132
Example output 133
Command line interface 134

Find 135
The SetUp dialogue box 135
The Application menu 140
Example output 140
Command line interface 141

LibFile 143
The SetUp dialogue box 143
Output 145
Command line interface 147

Link 151
The SetUp dialogue box 151
Output 154
Possible errors during a link stage 155
Libraries 155
Generating overlaid programs 156
Relocatable AIF images 159
Relocatable modules 160
Transient utilities 161
Predefined linker symbols 161
Command line interface 162

ModSqz 165
The SetUp dialogue box 165
The Application menu 166
Example output 166
Command line interface 166

ObjSize 169
The SetUp dialogue box 169
The Application menu 169
Example output 170
Command line interface 170
v

Contents
SID 171

Squeeze 173
The SetUp dialogue box 173
The Application menu 174
Example output 174
Command line interface 174

UnModSqz 177
The SetUp dialogue box 177
The Application menu 178
Example output 178
Command line interface 178

Xpand 181
The SetUp dialogue box 181
The Application menu 182
Example output 182
Command line interface 183

Adding your own desktop tools 185
The FrontEnd module 186
Producing a complete Wimp application 187
The DDEUtils module 202
SrcEdit 203
Make 203

Appendices 205

Changes to the tools 207

Makefile syntax 209
Make and AMU 209
Makefile basics 210
Makefile structure 212
Advanced features 216
Makefiles constructed by Make 227
Miscellaneous features 228
vi

Contents
FrontEnd protocols 231
Star Commands 231
EBNF Grammar of Description Format 231
WIMP Message returned after a *FrontEnd_SetUp 236

DDEUtils 237
Filename prefixing SWIs 237
Filename prefixing *Commands 238
Long command line SWIs 238
Throwback SWIs 239
Throwback WIMP messages 241

SrcEdit file formats 245
Language File Format 245
Help File Format 245

Code file formats 247
Terminology 247
Byte Sex or Endian-ness 247
Alignment 248
Undefined fields 248

AOF 249
Chunk file format 249
Object file format 250

ALF 267
Library file format 267
Object Code Libraries 270

AIF 271
Properties of AIF 271
The Layout of AIF 273
Zero-Initialisation Code 277

ASD 280
Order of Debugging Data 280
Endian-ness and the Encoding of Debugging Data 281
Representation of Data Types 282
Representation of Source File Positions 283
Debugging Data Items in Detail 283
vii

Contents
ARM procedure call standard 297
The purpose of APCS 297
The ARM Procedure Call Standard 299
APCS variants 307
C Language calling conventions 309
Some examples 316
The APCS in non-user ARM modes 318

Index 321
viii

Introduction

corn C/C++ provides a set of RISC OS desktop applications for programming.

These tools interact in ways designed to help your productivity and make the

desktop a high quality environment for creating RISC OS applications and
relocatable modules from compiled languages or assembler.

The Apps.DDE directory is where the desktop tools reside:

With the exception of the Desktop Debugging Tool (DDT), all these tools are multi
tasking RISC OS applications. DDT has to operate outside RISC OS in order to stop
it dead at any moment for breakpoints etc., so is windowed but not multi tasking.
The desktop tools allow you to:

● edit program source and other text files

● search and examine text files mechanically

● examine some types of binary file

● compile and link programs, relocatable modules and utilities

● assemble and disassemble assembly language programs

● construct programs efficiently under the control of makefiles

● construct linkable libraries

● debug RISC OS desktop applications interactively

● construct resource files for Toolbox applications.

The Acorn C compiler, C++ compiler and Assembler are described in the Acorn
Assembler and Acorn C/C++ manuals.

A

1

About this manual
About this manual

This volume is organised into four parts:

● Part 1 – Getting started

● Part 2 – Interactive tools

● Part 3 – Non-interactive tools

● Part 4 – Appendices

Part 1 – Getting started

This part of the manual describes how to install Acorn C/C++ and how to use the
desktop tools.

The chapters are:

● Installing Acorn C/C++

● Working with desktop tools

Part 2 – Interactive tools

This has chapters covering each of the desktop tools which you use with constant
interaction as ‘foreground’ tasks. They are the debugger, make and source editor.

The chapters are:

● Desktop debugging tool

● Make

● SrcEdit

Part 3 – Non-interactive tools

This covers the less interactive desktop tools which all have similar interfaces. The
first chapter in this part covers the general features common to all the
non-interactive tools. The following chapters each describe an individual tool. The
last chapter describes how to add your own desktop tools.

The chapters are:

● General features

● A8Time

● ABC

● AMU

● DecAOF

● Diff
2

● Find

● LibFile

● Link

● ModSqz

● ObjSize

● SID

● Squeeze

● UnModSqz

● Xpand

● Adding your own desktop tools

Part 4 – Appendices

This part of the manual gives technical details of the file formats and protocols
used in Acorn C/C++.

The appendices are:

● Changes to the tools

● Makefile syntax

● FrontEnd protocols

● DDEUtils

● SrcEdit file formats

● Code file formats

● ARM procedure call standard

Conventions used

Throughout this manual, a fixed-width font is used for text that the user should
type, with an italic version representing classes of item that would be replaced in
the command by actual objects of the appropriate type. For example:

link options filenames

This means that you type ‘link’ exactly as shown, and replace ‘options’ and
‘filenames’ by specific examples.

A bold version of the same font is used for text that the computer responds with.

Hexadecimal integers are given in uppercase, and preceded by 0x, e.g. 0xFE1.
(Not preceded by &, which will be more familiar to users of BBC BASIC.)
3

Conventions used
4

Part 1 - Getting started
5

6

1 Installing Acorn C/C++

nstalling Acorn C/C++ means setting up a suitable disc directory structure. You

only need to perform this once to set up a suitable structure.

To use Acorn C/C++ you will need to install it; booting is performed automatically.

This chapter only describes installation. The chapter Working with desktop tools
explains how to use the desktop tools.

Hardware and OS requirements

The minimum specification of RISC OS system recommended for serious use of
Acorn C/C++ is a 4MB RAM machine with a hard disc drive.

A limited subset of features of Acorn C/C++ can be used on a 2MB RAM machine,
but its use is not recommended.

The Acorn C/C++ tools and the code they generate are suitable for use on RISC OS
3.10 and later versions and for ARM2 and later processors, including 32-bit
versions of RISC OS running on ARM6 and later processors.

Installation

The Desktop Development Environment is supplied as an archive that includes the
tools, the example files and PDF versions of the manuals.

Using RISC OS, copy the contents of the archive over the top of the root of your
boot disc. This should merge the DDE with your disc image and put everything into
the right place. Next, open the directory AcornC/C++.Developer and double-click
on !SysMerge. This will update your !System directory to ensure that it contains all
the files required to use the tools.

I

7

Environment variables and Acorn C/C++
Environment variables and Acorn C/C++

Various Acorn C/C++ operations depend on the correct settings of environment
variables. These environment variables are set by the SetPaths application in the
AcornC/C++ directory when it is first seen by the filer. You can also run the
SetPaths application explicitly at any time to set these variables to their default
state. To see all the variables that are set by SetPaths, open the file
!SetPaths.SetPaths. Details of the key variables are summarised here, but note that
this is not a complete list.

Each desktop tool, when loaded, defines an environment variable of the sort
<toolname>$Dir. The purpose of these variables is to allow each tool access to
its application directory. These are not likely to become incorrectly set and cause
problems. SrcEdit can be configured with options from its desktop interface, and
also from options variables, as described in the chapter SrcEdit later in this manual.

DDE$Path

Purpose: This is set to the name of the directory containing the desktop tools,
and is used by Make to start tool interfaces for setting Tool options.

Problems: If DDE$Path is unset, the Make Tool options facility fails with an
error mentioning DDE:.

C$Path

Purpose: This specifies a list of directory names for the C compiler to search
for libraries and their headers.

CLib$Path, TCPIPLibs$Path, RISCOSLib$Path

Purpose: These paths specify lists of directory names to be searched for the
library object files for CLib, TCPIPLibs and RISC_OSLib respectively.

Hdr$Path

Purpose: This specifies a list of directory names that can be searched to find
standard RISC OS assembly language header files.

Makefiles$Path

Purpose: This path is used to locate the Shared Makefiles.
8

Installing Acorn C/C++
LocalRes$Path

Purpose: This specifies a list of directory names to be searched for resources
when using the install target in the Shared Makefiles.

Install$Dir

Purpose: This is the directory into which files are installed when the install
target of the Shared Makefiles is used.
9

Environment variables and Acorn C/C++
10

2 Working with desktop tools

his chapter provides an overview of the most productive way to work with the

desktop tools to produce your programs. The chapter Installing Acorn C/C++

describes how to prepare your working environment.

Desktop tools

Acorn C/C++ includes the following tools:

● DDT – A windowed debugger for debugging any executable image file,
including the !RunImage file of a RISC OS application. DDT presents a
windowed interface with RISC OS style controls.

Note that as DDT has to be capable of stopping RISC OS dead at any point in a
program, for breakpoints, single stepping, etc, it cannot multitask under the
RISC OS desktop.

● Make – A desktop application for constructing programs under the
management of ‘recipes’ stored in Makefiles. Various types of Makefile can be
rapidly constructed using the desktop controls of Make, as well as being
executed. This facility for constructing Makefiles is known as ‘project
management’ on some programming systems for other types of computer.

● SrcEdit – A text editor derived from Edit with many features for constructing
program sources and other text files.

● AMU – A compact alternative to Make for using, but not constructing,
Makefiles.

● DecAOF – A utility for examining AOF files output by language compilers or
assemblers.

● Diff – A text file comparison tool.

● Find – A tool for finding text patterns in the names or contents of sets of files.

● Link – A tool for constructing usable relocatable modules, program files, etc.,
from object files produced by language compilers and assemblers.

● LibFile – A utility for constructing linkable library files storing general purpose
routines for re-use in more than one program.

● ObjSize – A utility to measure object file size.

● Squeeze – A tool which compacts finished program images so that they
occupy much less disc space and load faster.

T

11

Desktop tools
● ModSqz – A tool which reduces the size of relocatable modules.

● Xpand and UnModSqz – Tools to reverse the effect of Squeeze and ModSqz.

● A8Time – A Cortex-A8 instruction-timing simulator which helps calculate the
time required to execute sequences of ARM instructions.

● SID – A general-purpose disassembler for ARM binaries.

● ABC – A compiler for programs written in BBC BASIC.

Each of the tools listed above is described in more detail in its own chapter later in
this volume. The language specific tools are described in the language user guides
accompanying this manual.

As well as performing individual tasks, several of the desktop tools cooperate in
ways designed to enhance your productivity. An example of this is throwback. When
a language compiler or assembler detects an error in a program source file, it can
cause throwback – opening a SrcEdit window for immediate correction of the
offending program line. Another example of cooperation is the ability to drag an
output file from one desktop tool to the input of another appropriate desktop tool.

Interactive and non-interactive tools

The desktop tools are divided into two categories – interactive and non-interactive.
The non-interactive tools are those that have options set and then are run, without
any further interaction with you until the task completes or is halted. The
interactive tools are those that operate with constant interaction with you, such as
the source editor SrcEdit.

In the list of tools above, the first three (DDT, Make and SrcEdit) are interactive
tools, and the rest are all non-interactive. The chapters describing each tool are
organised into parts of this manual describing each category of tool. The
non-interactive tools all have similar user interfaces, and the features common to
all of them are described in the chapter General features on page 103.

Entering filenames

Many of the desktop tools require you to specify file or directory names. The
interactive tools each have file types that they ‘own’, which you can double click on
in directory displays to start activities. These are:

● DebugAIF – execution of one starts a DDT session. Files of this type are
displayed in directory displays with the icon:
12

Working with desktop tools
● Makefile – double clicking on one loads it into Make (and may start a Make
job). Files of the type Makefile are displayed in directory displays with the icon:

● Text – double clicking on one starts a SrcEdit edit.

None of the non-interactive desktop tools own a file type. Input files are specified
to these tools by dragging them to their icon bar icons from a directory display or
by typing their names into a writable icon in a dialogue box or menu field. When
typing filenames into a writable icon, enter absolute filenames such as:

adfs::rool.$.Sources.DDE-Examples.Toolbox.TboxCalc.o.Main

To reduce the amount of typing required, any writable icon on a dialogue box that
accepts a filename or directory name can be set by dragging a filename from a
directory display to it. For example, dragging a filename from a directory display to
the Files writable icon on the Link SetUp dialogue box adds it to the list of input
files already specified:

Many program source files and Makefiles contain filenames, for example in an
assembler program line such as:

GET ^.h.SWINames

RISC OS provides only one current directory, but many tasks (such as assembly
processes) can be multitasking, running at the same time. Thus the concept of work
directory is used in Acorn C/C++. This can be considered rather like a current
directory for each task, and file searching is performed relative to this. See the
section on each tool to see the way the work directory is set and used by that tool.
Most of the simpler tools do not require a work directory.
13

Working styles
Working styles

The desktop tools support two main styles of working – managed and unmanaged
development. These differ only in the way you construct your finished programs
from sources, not the way you write or debug them, and you can mix and match the
two styles as you wish.

Managed development makes use of Makefiles to manage the construction of your
finished programs. A Makefile is a ‘recipe’ for processing your sources and linking
the object files produced to form the usable program. The tools Make and AMU can
both execute the commands in a Makefile running other tools to perform a make
job. The tool Make also constructs Makefiles for you, avoiding the need for you to
understand their syntax, and making it quick and easy to do this. The main
advantages of managed development are: timestamps of files are examined during
a make job and no unnecessary reprocessing of unaltered program sources is
performed; programs are constructed consistently, following the same recipe each
time, even when run by different people. These advantages make managed
development the best style for the development of larger programs with source
split into several source files.

Unmanaged development makes use of each individual tool directly to process the
files as required to construct your programs. This can offer the quickest way of
constructing small programs.

When Booting for unmanaged development you have to load each tool that you
wish to use, but when Booting for managed development you only need to load
Make (or AMU).

When working in either style, it is recommended you place each program project in
a separate subdirectory, in the same way that the program examples are arranged.
You can place the source, header and object files in suitable subdirectories of the
project directory. See the accompanying language specific manuals for more
details of subdirectory conventions. Source may be placed elsewhere, but this can
make it more difficult to rename or move whole projects to other directories or
filing systems.

Where to go from here

If you have studied this chapter in detail you now understand how to construct a
simple runnable program from text sources. You may now wish to load various
desktop tools and experiment with their use, and there are further chapters that
may provide useful general information.
14

Working with desktop tools
Each desktop tool, such as the text editor SrcEdit and debugger DDT, has a chapter
describing it, either in this user guide or in one of the accompanying manuals. If
you intend to make much use of any particular tool, its chapter may prove useful
reading next.

A large number of the desktop tools are classified as ‘non-interactive’, and have
similar interfaces. The chapter General features on page 103 covers the interface
features of this class of tool.
15

Where to go from here
16

Part 2 - Interactive tools
17

18

3 Desktop debugging tool

his chapter describes the desktop debugging tool (DDT). DDT is an interactive

aid to debugging desktop or non-desktop programs written in compiled

languages such as C, Pascal or Fortran. DDT can also be used to debug programs
written in ARM assembler using ObjAsm.

DDT can be used on any computer running RISC OS 3.10 or later. It can emulate
both 26-bit and 32-bit environments.

Overview

Although DDT can be used to debug desktop programs, and provides a windowed
interface, it is not a true multitasking desktop program. This is because DDT has to
be able to halt the RISC OS desktop at any point for single stepping, breakpoints
etc. This means that its interaction with other RISC OS applications is limited in
certain ways:

● When the debugger is active (i.e. when a program is halted under control of the
debugger) all other tasks are halted until execution of the program is resumed.

Note: You can always tell when the debugger is active, because the pointer will
change to a No Entry sign if you move it outside the debugger’s windows:

● Only one application may be running under the debugger at any given time.

The windowed interface of DDT is designed to be easily understood by RISC OS
desktop users, and to facilitate this it duplicates many RISC OS features. However,
it uses visual details such as unusual colours to act as reminders that it is not
operating as a true desktop multitasking program.

Topics covered in this chapter
● the section About debuggers introduces the concept of debuggers in general and

describes the facilities provided by DDT.

● the section Preparing your program describes how to prepare your program for
use with DDT.

T

19

About debuggers
● the section Starting a debugging session describes how to invoke the debugger on
your program.

● section Specifying program objects describes the way in which various objects in
the program you are debugging, such as variable names, procedure names and
line numbers are specified.

● section Execution control describes how to control execution of a program
running under the debugger.

● section Program examination and modification describes the debugger’s facilities for
displaying various objects in the program being debugged and the facilities for
changing variable, register and memory contents.

● section Options and other commands describes the options in the options
dialogue box and other commands which are not covered by any of the
previous topics.

About debuggers

This section is aimed mainly at readers who haven’t used a program debugger of
any sort before. However, others may find it useful reading, as it introduces some
of the facilities provided by DDT.

Anyone who has written a program more than about ten lines long has had
recourse to debugging techniques: the tracking down and removal of errors. The
form this takes depends on many things, not least the language in which the
program is written.

Some languages provide primitive debugging facilities of their own. For example
ISO C provides the assert macro which can be used to ensure a condition is true,
as in the following example:

assert(i >= 0); /* Ensure following loop is finite */
while (i--) { ... }

Some language implementations provide additional debugging facilities. A
description of the debugging facilities provided by Acorn’s release of C may be
found in the accompanying Acorn C/C++ manual.

Often, however, it is left to the programmer to plant trace information in the
program itself. For example you might trace the value of the index variable in a
while loop as follows:

while (i--) { fprintf(tracefile, "i = %d\n"); ... }
20

Desktop debugging tool
Such additions to the program can be useful, but are tedious to use in compiled
languages, because every time you want to change the debugging statements, the
program has to be recompiled. There is also the possibility that the debugging
statements themselves have undesirable side-effects which contribute to the
ill-health of the program.

Planting trace information in assembly language programs is more difficult. For
example, displaying the contents of all ARM registers is a non-trivial code fragment
in ARM assembler.

A debugger enables you to execute your program in a controlled environment
where you can stop execution, examine and alter variables, set breakpoints, single
step through a program and ‘watch’ particular variables for changes.

DDT provides the following debugging facilities:

● Start program execution and continue after program execution has been
stopped

● Single step program execution, by source statement or ARM instruction

● Stop program execution at a specified program location

● Stop program execution when a specified variable changes its value

● Stop program execution at any time on request

● Trace program execution continuously

● Trace procedure calls

● Trace changes to a specified variable or memory location

● Display source text, symbolic disassembly, variables, registers, memory
contents and stack backtrace information

● Alter variable values, register contents or memory contents

● Protect sensitive areas of memory against being accidentally overwritten by
your program.

Preparing your program

This section describes how to prepare your program for use with DDT. DDT uses
special information in the program being debugged, which provides DDT with
information about the source code that generated the program. This information is
not automatically included in the output of the compiler. This is mainly for reasons
of efficiency; programs which contain debugging information are larger, take longer
to compile, and run more slowly than those with no debugging information.
21

Preparing your program
Compiling

You enable the generation of debugging information with the Debug option on the
compiler SetUp menu. If you are using the compiler from the command line use
the -g flag to enable debugging information with the Acorn C compiler (other
compilers may use different flags, though -g is common across a wide range of
compilers).

Because each module of a program can be compiled with its own debugging
information, you need only specify debugging for suspect modules. Well-proven
modules in which you have complete faith can be compiled with no debugging
information, whereas newer, less reliable code can have debugging information
enabled.

Turning on debugging inhibits optimisation, and reduces the speed of execution of
your program even when you are not debugging it. This of course does not matter
when you are using the debugger, but for maximum speed, programs should be
compiled without debugging information, especially for production builds.

Note that if you are using an automated program construction tool, such as the
Make utility, you may have to delete the object files of the modules you wish to
compile with debugging information when you enable the Debug option. This is
because the modules are not recompiled until the object files are either absent, or
out of date with respect to the source files, so you must delete the object files to
force recompilation.

Linking

When linking a program to be debugged, you must instruct the linker to include the
debugging information generated by the compiler. To do this, enable the Debug
option on the link menu, or, if you are using the linker from the command line, by
using the -debug flag.

If you are using Acorn’s C compiler to perform the link stage (i.e. without the
Compile only option enabled on the compiler menu, or without the -c flag from
the command line) the compiler will automatically instruct the linker to include
debugging information if the compiler’s debugging option is enabled.

The linker also generates its own debugging information. This debugging
information is used by DDT to provide low-level or symbolic debugging facilities. If
you do not wish to use source level debugging facilities, you can enable the Debug
option on the linker without enabling the Debug option on the compiler.

Note that !RunImage files compiled or assembled and then linked with Debug
enabled are much larger than those produced without debug information. This
may require an increase in the WimpSlot size specified in your !Run file, otherwise
the following error may be produced at run time:
22

Desktop debugging tool
No writable memory at this address

If you are writing in assembler using ObjAsm you may wish to use the KEEP
directive, which instructs the assembler to keep information about local symbols
in the symbol table. These will be included in the program when linked with
debugging enabled.

You might like to try preparing the following small program for use with the
debugger, using the methods described above.

 1 #include <stdio.h>
 2
 3 int main(void)
 4 {
 5 int world;
 6
 7 for (world = 0; world < 100; world++)
 8 printf("Hello, World %d\n", world);
 9 return 0;
 10 }

Starting a debugging session

You can start a debugging session in one of the following ways:

● Double click on the !DDT application. This will place the debugger’s icon on
the icon bar. Then drag the program to be debugged to the debugger’s icon.
You can drag either a program image or an application directory. If you drag an
application directory, the program image within that directory must be called
either !Run or !RunImage.

● Choose Debug from the debugger application menu. This will produce a
dialogue box with two writable icons, one for the name of the application to be
debugged, the second for any arguments the application may take. You can
specify the program name by dragging an application to the writable icon.
When the writable icons have been filled, clicking the OK button will invoke
the debugger.

● Enter the following *Command:

*DebugAIF program [arguments]

where program is the name of the program to be debugged, and
arguments are any command line arguments that program may take. You
can enter this command from the supervisor prompt (outside the desktop),
from the Shell CLI prompt (obtained by choosing the *Commands option on
the Task Manager menu) or from a task window CLI prompt.
23

Starting a debugging session
Try invoking the debugger on the sample program shown at the end of the last
section.

Once you have started a debugging session in one of the above ways, two debugger
windows will be displayed as follows:

The upper window is the Context window. The title bar contains the name of the
program being debugged. The Context window displays the source text or symbolic
disassembly associated with the current Context or PC location.

When you start a debugging session, the Context window initially displays a
symbolic disassembly, like that shown above. This is a disassembly of the run-time
system initialisation code. The arrow symbol (→) to the left of the window shows
the current PC location. The debugger does not display your source code at this
stage because the program has not started executing your code, it still has to
execute the initialisation code. Once execution reaches your code (i.e. the first
instruction of main) your source code will be displayed.

The lower window is the Status window. The title bar contains the current status of
the program being debugged. The Status window displays error and informational
messages, in addition to any data displayed by the debugger’s display, trace and
watchpoint facilities. The Status display scrolls when any new information is
displayed. You can use the scroll bar to examine earlier contents of the status
display.

Some messages that may appear in the Status window at this stage are:

No debugging information available
24

Desktop debugging tool
This means that you are debugging a program which has not been linked with
debugging information. No source-level or symbolic debugging facilities are
available, and debugging is limited to machine-level debugging (i.e. everything
must be specified in terms of machine addresses). If you have forgotten to link the
program with debugging information you should quit the debugging session, relink
the program with debugging enabled and start the debugging session again.

No source level debugging information

This means that you are debugging a program which has been compiled without
debugging enabled. No source-level debugging facilities are available, symbolic
debugging facilities are available (i.e. objects can be specified in terms of link time
symbols). If you have forgotten to compile the program with debugging
information, quit the debugging session and recompile the program with
debugging enabled.

RO area limit not on page boundary, last page not protected

This message occurs when memory protection is enabled (as it is by default) and
the last part of the code or read only area is not page aligned. This means that the
last page of the read only area cannot be protected against accidental writes, since
writing to data, or a read/write area which immediately follows the code area,
would cause an erroneous data abort. You can ignore this message. Future
versions of the linker may align the areas on page boundaries when linking with
debugging enabled.

Can’t set breakpoint on procedure main

When a debugging session is started the debugger automatically tries to set a
breakpoint on main if the Stop at entry option is enabled (as it is by default). If the
address of main cannot be determined, because, for example, the module
containing the procedure main has not been compiled with debugging information
enabled, or, the program is not written in C, then the above message will be
displayed.

Try moving the pointer completely outside the debugger’s windows. The pointer
will change to a No Entry pointer, indicating that the debugger is active and you
cannot select anything outside the debugger’s windows. Moving the pointer back
inside the debugger’s windows changes it back to the usual arrow pointer.
25

Specifying program objects
Clicking Menu on either debugger window produces the following menu:

Continue, Single step, Call, Return, Breakpoint and Watchpoint are explained in
the section Execution control on page 33.

Trace, Context, Display and Change are explained in the section Program
examination and modification on page 41.

Log, Find, Options, Help, Quit and *Commands are explained in the section
Options and other commands on page 46.

Specifying program objects

Once the debugger is running, the program can be executed, single stepped, have
its variables examined or altered and so on. All of these facilities are described in
the following sections. However, before you can use these facilities, you must know
how to refer to certain program objects. Variable names, line numbers, procedure
names and memory addresses all have a syntax which must be used if you are to
reference the desired object.

The following notation will be used in describing the syntax:

● An item in square brackets ([]) is an optional item which can be omitted if
desired.

● An item in braces ({}) is an optional item which can be repeated as many
times as desired.

● An item in italicised text is a non-terminal item, i.e. an item which must be
replaced by a suitable string of characters.

For example, an optional, comma-separated list of numbers would be denoted by:

[number{,number}]
26

Desktop debugging tool
Procedure names

Procedure names are used, for example, when setting a breakpoint on entry to a
procedure. The syntax for a procedure name is:

[module:]{procedure:}procedure

where module is the name of a program module and procedure is a procedure
name within that module. Each procedure name in the list of procedure names
refers to a successive procedure in the textual nesting of procedures. The module
name is the leaf filename of the compiled source file. For example, consider the
following program fragment stored in file pas.test.

 program raytrace(input, output);
 var count : integer; ...
 procedure pixel(x, y : integer);
 var colour : integer; ...
 function reflect(x, y : integer; angle : real) :
integer;
 ...
 begin (* body of reflect *) end;
 begin (* body of pixel *) end;
 begin (* body of raytrace *) end;

The full name for function reflect would be:

 test:raytrace:pixel:reflect

that is, procedure reflect contained in procedure pixel contained in
procedure raytrace (the debugger treats the entire Pascal program as one large
procedure) contained in module test (module names do not generally make
much sense for Pascal, since standard Pascal has no facilities for separate
compilation, but many Pascal implementations, including Acorn’s ISO Pascal, have
extensions to allow separate compilation).

Note: Some Pascal implementations on RISC OS computers do not represent
procedure names in the manner described above. Instead, they generate a new
procedure name at the outermost level by concatenating enclosing procedure
names to the current procedure name separated by a dot. Also, they do not
generate a pseudo-procedure for the whole program. Thus, with such an
implementation, the full name for function reflect would be
test:pixel.reflect.

You do not need to type the full name every time you wish to refer to a procedure:
Since the prefixed module name and procedure names are optional they can be
omitted, and the procedure referred to by its name alone (e.g. reflect or
27

Specifying program objects
pixel.reflect in the above example). Sometimes it will be necessary to enter
a longer version of the procedure if there are two or more procedures with the
same name.

Suppose in the above example there was a procedure:

 test:raytrace:line:reflect

reflect on its own would be ambiguous, so you would have to enter
pixel:reflect or line:reflect to specify which one you meant. Note that
it is still not necessary to enter the test:raytrace prefix, since the line or
pixel prefixes are sufficient to render the procedure name unambiguous.

Similarly, suppose you had two C modules called quickdraw and slowdraw,
each containing a static function circle. In this case you would need to enter
either quickdraw:circle or slowdraw:circle to indicate which circle
function you were referring to.

Even if two procedures have the same name, it may not be necessary to enter more
than the procedure name on its own. When looking at a procedure specification,
the debugger searches back along the dynamic call chain (i.e. the chain of
procedures called to reach this point in the program) to find a procedure name
which matches the first name in the procedure specification. Having found this, it
matches the rest of the procedure specification against textually nested
procedures contained within the first procedure found.

For instance, in the above example with two reflect procedures, if the program
was stopped (at a breakpoint, perhaps) at some point in pixel:reflect, then
reflect on its own would refer to pixel:reflect, since on looking at the
dynamic call chain the debugger would find that it was in a procedure called
reflect, and would match that against the procedure specification reflect.

Variable names

Variable names are used, for example, when setting a watchpoint. The syntax for a
variable name is.

[procedure-specification:][line number:]variable

where procedure-specification is a procedure specification as described in
the section above, line number is a line number in a source file and variable
is the name of a variable.

As in the case of a procedure specification, the debugger tries its best to match a
variable name given to it, by first searching back along the dynamic call chain, and
then searching the global variables, so it is usually not necessary to specify more
than the variable name on its own.
28

Desktop debugging tool
In the raytrace example above, if the program was stopped at some point in the
function reflect then x, y and angle would refer to the arguments in function
reflect, colour on its own would refer to the local variable colour in
procedure pixel (since the debugger searches back the call chain and finds
procedure pixel containing a variable colour). The variable count would refer
to the global variable count in program raytrace.

In some cases, however, it may be necessary to specify more information about the
variable; suppose, for example, you wanted to examine the arguments x and y to
the procedure pixel. Specifying x or y on its own would display the x or y
argument in function reflect so you must specify pixel:x or pixel:y.

There may still be some ambiguity in languages other than Pascal. In Pascal you
cannot declare local variables within a program block (i.e. between a
begin...end pair), however C allows declarations in local blocks. Consider for
example the following code fragment as it would be displayed in the debugger’s
source window:

The are two declarations of tmp in logical, so tmp or logical:tmp may be
ambiguous. In this case you must specify a line number before the variable name
to remove the ambiguity.

For example, to refer to the tmp variable in the outer scope (i.e. at the function
level) you could enter:

117:tmp

or

logical:117:tmp

To refer to the tmp variable in the inner block, use:

120:tmp

or

logical:120:tmp
29

Specifying program objects
The line number should be the line number of the declaration of the variable (in
this case 117 or 120). The line numbers are displayed in the source window, so it is
quite easy to find the line number of the declaration.

The syntax described above is sufficient to refer to all textually nested variables.
However, variables in earlier instances of a recursive or mutually recursive
procedure cannot be accessed. For example:

void hanoi(int src, int dest, int via, int n)
{

if (n > 1) {
 hanoi(src, via, dest, n - 1);
 hanoi(src, dest, via, 1);
 hanoi(via, dest, src, n - 1);

} else
printf("Move disc from peg %d to peg %d\n", src,
dest);

}

Suppose this function is called with n = 3 and that it recurses until it hits a
breakpoint on the printf when n = 1. There is no direct way to refer to the
variables src, dest and via in an outer call when n = 2 or 3 since any reference
to these variables will refer to the variables in the call with n = 1. What you can do
is, use the Context option on the debugger’s main menu (described in the section
Program examination and modification on page 41) to change the context to an outer
call on the stack. Since the debugger searches from the current context outwards,
you can now specify the variable as per normal. The debugger will ignore the
variables in inner calls and use the variable in the current context.

C99 variable length arrays are not fully represented in the debugging format. The
current C implementation uses a concealed pointer to an allocated block, so to
view a local variable-length array, it must be specified as *array. This is
analogous to the way the debugger currently treats C++ references.

Expressions

Several DDT commands (for example Display Expression) may take arbitrary
expressions. The syntax for these expressions is based on that found in C.

The following table summarises the operators available along with the precedence
of each operator.

1 () grouping, e.g. a*(b+c)
[] subscript, e.g. isprime[n], matrix[1][2]
. record selection, e.g. rec.field, a.b.c
-> indirect selection, e.g. rec->next is (*rec).next
30

Desktop debugging tool
2 ! logical not, e.g. !finished
~ bitwise not, e.g. ~mask
– negation, e.g. -a
* indirection, e.g. *ptr
& address, e.g. &var

3 * multiplication, e.g. a*b
/ division, e.g. c/d
% remainder, e.g. a%b is a-b*(a/b)

4 + addition, e.g. a+1
– subtraction, e.g. b-d

5 >> right shift, e.g. k>>2
<< left shift, e.g. 2<<n

6 < less than, e.g. a greater than, e.g. n>10
<= less than or equal to, e.g. c<=d
>= greater than or equal to, e.g. k>=5

7 != not equal to, e.g. count!=limit

8 & bitwise and, e.g. i & mask

9 | bitwise or, e.g. m1 | &0100

The lower the number, the higher the precedence of the operator. Note the syntax
for subscripting and record selection. The object to which subscripting is applied
must be a pointer or array name. The debugger will check both the number of
subscripts and their bounds in languages which support such checking. A warning
will be issued for out-of-bound array accesses. As in C, the name of an array may be
used without subscripting to yield the address of the first element.

The prefix indirection operator * is used to dereference pointer values, in the same
way as Pascal’s postfix operator ̂ . Thus if ptr is a pointer type, *ptr will yield the
object it points to (as ptr^ in Pascal).

To access the fields of a record through a pointer, you can either use
(*recp).field, or the C ‘shorthand’ notation, recp->field.

If the lefthand operand of a right shift is a signed variable, then the shift will be an
arithmetic one (i.e. the sign bit is preserved). If the operand is unsigned, the shift
is a logical one, and zero is shifted into the most significant bit.

If incompatible types are used during expression evaluation, the debugger will
print a warning message, but evaluation will continue.
31

Specifying program objects
Constants may be integers (to the base specified in the Base option), hex integers
(preceded by &) character constants, strings or floating point numbers. The
following show examples of each:

32768 Integer in the currently selected base
&8000 Hex integer
3.2768e4 Floating point number
'A' Character constant
"Hello, World" String

Addresses & low-level expressions

This section describes the syntax for low-level expressions. It is directed mainly at
assembly language programmers. You can skip this if you will only be using the
high level language debugging facilities.

The syntax for a low-level expression (as used, for example, when setting a
breakpoint on a memory address or displaying a disassembly or memory dump) is
as follows (an understanding of BNF is assumed):

expr ::= value + expr | value | expr
value ::= '&' hex-number | number | symbol

where hex-number is a hexadecimal number, number is a number in the default
base (hexadecimal if no default base specified) which must start with a digit in
range 0…9 and symbol is a low level symbol in the debugging information
produced by the linker.

Examples:

main Address of function main.

main + &14 Five words into main.

8000 Start of image (assuming the image has not been relocated
and the default base is hex.)

Image$$RO$$Base Preferred way of specifying base of program.
32

Desktop debugging tool
Execution control

This section describes how you can control the way in which the debugger executes
your program.

Continue

Continue starts or restarts execution of the program. Execution continues until
one of the following events occurs:

● a watchpoint changes or is cancelled

● the program runs to completion

● an error or abort condition occurs.

You can interrupt execution of the program at any time by pressing Shift-F12. Note
that if another task is executing when you press Shift-F12 you may need to
generate an event to force execution to return to the program before the Shift-F12
interrupt will be noticed. The simplest way to do this, usually, is to click on the
program’s icon on the icon bar, or click on one of its windows.

As the debugger sets a breakpoint on procedure main, you can usually use
Continue to start execution of the program and get to the first line of your source
text. You cannot do this if

● you have disabled the Stop at entry option, or

● the Can’t set breakpoint on main message appeared when you
started the debugging session.

Note that if you have any watchpoints set, the instructions are single stepped
instead of executed and the watchpoints are checked after each instruction. If any
have changed, the single stepping is stopped at that point. This will be completely
transparent, except that the program runs more slowly than normal.

You can use Ctrl-C as a short cut for Continue.
33

Execution control
Single step

Single step allows you to step execution through one or more source statements
or ARM instructions. Choosing Single step produces the following dialogue box:

No. of steps allows you to enter the number of statements or instructions to be
executed. The Step by source statement and Step by ARM instruction radio
icons allow you to specify whether the contents of No. of steps should be treated
as a source statement count or an ARM instruction count.

The Step into procedures option icon selects whether procedure calls should be
treated as a single source statement / ARM instruction or whether single stepping
should continue into the procedure call.

Note that the debugger cannot detect certain types of procedure calls, for example,
calls via function variables in C. In these cases the debugger will continue stepping
into the procedure, regardless of the setting of the Step into procedures option.

Note for assembly language programmers: The debugger treats BL instructions as
procedure calls, so if some other instruction is used to call a procedure, this will
not be detected by the debugger. For instance, consider the following example,
which might be produced by the C compiler when calling via a function variable.

MOV lr, pc ; Set up link. PC = current instruction + 8
LDR pc, [sp, #o_fn] ; Load PC from function variable on stack
... ; Returns here

You complete the Single step dialogue by clicking on OK or pressing Return. The
specified number of statements or instructions are then executed.

Note that if you are currently stopped at an ARM instruction for which there is no
source information, stepping one source statement will step ARM instructions
until an instruction for which source information is available is reached. This can
be used when you initially start a debugging session, and wish to step to the first
source statement to be executed. This is usually the first instruction of main for C
programs, but need not necessarily be so, if, for example, the module containing
main was not compiled with debugging information.
34

Desktop debugging tool
You can use Ctrl-S as a short cut for single stepping 1 instruction or source
statement. The Step into procedures and Step by source statement / Step by
ARM instruction are determined by the current settings in the Single step
dialogue box (i.e. the settings when the dialogue box was last displayed).

Call

Call allows you to call a named procedure. Choosing Call produces the following
dialogue box:

The writable icon allows you to specify the name of the procedure to be called. You
can specify arguments to the procedure in a comma-separated list in round
brackets after the procedure name.

The arguments must be word-sized objects (e.g. integers or pointers) or
floating-point values. Floating-point arguments occupy the next two adjacent ARM
registers or stack words as described in the ARM Procedure Call Standard (i.e.
floating-point arguments are not passed in floating-point registers).

Complete the dialogue by clicking on OK or pressing Return. The specified
procedure is called with the arguments on the program’s stack, and in ARM
registers R0 - R3.

Note that the program’s stack pointer must be initialised before attempting to call
a procedure: calling a procedure without a valid stack pointer may result in a Data
abort or Address exception. Therefore, if you are debugging a program written in C,
you must ensure you have executed the run-time system initialisation code using
Continue or Single step as described above. If you are debugging a program
written in assembler, you must ensure that you have executed your own
initialisation code, which must initialise the stack pointer.

Return

Return allows you to return from the current procedure. Choosing Return
produces the following dialogue box:
35

Execution control
You can enter a value to be returned from the procedure in the value writable icon.
This may be either an integer or floating-point value. If you do not specify a value,
a default value of 0 (or 0.0 for floating-point values) is used.

Note that the Return option returns from the procedure in the current context. If
you used the Context option to change the current context to an outer context on
the stack n on the debugger’s menu, the Return option will return from the
procedure in the selected context, rather than the currently executing procedure.

Breakpoint

Breakpoint is used to add and remove breakpoints. Choosing Breakpoint
produces the following dialogue box:

Choosing one of the at Procedure, at Line or at Address buttons sets a
breakpoint at the procedure, source line number or memory address entered in the
associated writable icon. The syntax for specifying these objects is described in the
section Specifying program objects on page 26.

Choosing the on SWI button causes the debugger to stop when the named SWI is
called by the debuggee. SWI names are specified as in the RISC OS Programmers
Reference Manual except that a leading ‘X’ is ignored and case is ignored when
matching SWI names.
36

Desktop debugging tool
Choosing the on Wimp event leads to the following dialogue box:

Select the set of Wimp events you are interested in and click OK. The debugger will
stop execution of the debuggee when it receives one of the specified events and
will display a message describing the event received.

For example:

Event = User message, action = 0 (Quit)

Choosing Remove removes the breakpoint specified in the associated writable
icon. The breakpoint may be specified as a breakpoint number, as given in the list
breakpoints command, preceded by a hash (#) or it may be specified exactly as
specified when setting the breakpoint.

List displays a list of all currently set breakpoints with breakpoint numbers which
can be used when removing individual breakpoints.

Remove all removes all current breakpoints.

You can use Ctrl-B as a short cut to produce the Breakpoint dialogue box.

Breakpoints may also be set or cleared by clicking on a line in a source or
disassembly display. Clicking on a line sets a breakpoint on the line. The
breakpoint is shown by the breakpoint marker (a filled in circle) to the left of the
line. Clicking on a line which already has a breakpoint removes the breakpoint.

Watchpoint

Choose Watchpoint to detect when a variable or memory location changes its
value. When a watchpoint is in force, instructions in the program are single
stepped instead of being executed and the values of the variables being watched
are checked after each instruction or source statement executed. Watchpoints may
be set on simple variables such as integers or more complex variables such as
37

Execution control
structs and arrays. Setting a watchpoint on a whole array can be very useful if, for
example, you are debugging a sort routine; you can track all changes to the array as
it is sorted.

Since the debugger is single stepping, execution can be quite slow, typically
between 4 and 10 times as slow as normal execution. If this is too slow to be
practical, the best approach is to try to isolate the section of code under suspicion,
set a breakpoint on entry to this section of code, and only set the watchpoint(s)
when the program stops at the breakpoint.

Choosing Watchpoint produces the following dialogue box:

Selecting on Variable or on Memory sets a watchpoint on the variable or memory
location specified in the associated writable icon. The syntax for specifying
variables or memory addresses is described in the section Specifying program objects
on page 26.

Remove removes the watchpoint specified in the associated writable icon. As with
breakpoints the watchpoint to remove may be specified as a watchpoint number
preceded with a hash (#) or exactly as specified when setting the watchpoint.

List displays a list of watchpoints currently in force. Remove all removes all
watchpoints.

Note that if you are watching a local variable (i.e. a variable stored on the stack) the
watchpoint will become invalid on exit from the procedure containing the variable
being watched. The debugger detects this and stops execution with the message:

Watchpoint watchpoint discarded on exit from procedure

where watchpoint is the name of the variable being watched.

Also note that when you are watching a variable which is stored in a register, the
debugger may erroneously report a change in the variable’s value. This is because
the C compiler does not allocate registers to variables over the whole range of a
procedure. Instead, it allocates the registers over the lifetimes of variables (i.e. the
range of the procedure in which the variable is actually used). Outside this range a
register may be used for other purposes (such as temporary values in calculations).
38

Desktop debugging tool
It may even be allocated to another variable, if the lifetimes of the variables do not
overlap. Thus the debugger may report a change in the variable when it sees the
register changing, but of course the register is no longer being used to store the
variable.

You can use Ctrl-W as a short cut to produce the Watchpoint dialogue box.

Trace

Trace allows you to select a set of actions about which you wish to be informed.
When one of these actions occurs a message to this effect is displayed in the
debugger’s status window. For certain actions the source / disassembly display is
updated to show where the action occurred.

The actions which you can trace are as follows:

Execution

The source / disassembly display is updated for every ARM instruction or source
statement executed (ARM instruction if Machine-level debugging is enabled,
source statements otherwise). The effect is to produce a continuous execution
display in the context window.

Breakpoints

When a breakpoint occurs, instead of stopping execution, a message is displayed
in the Status window:

Break at breakpoint

where breakpoint is the location of the breakpoint. The source / disassembly
display is updated to show where the breakpoint occurred. Execution then
continues after the breakpoint.

Watchpoints

When a watchpoint changes, a message of the following form is displayed:

Watchpoint watchpoint changed at location

where watchpoint is the name of the variable being watched, and location is
the program location where the watchpoint was changed. If, for example, you are
debugging a sort routine and have a watchpoint on the array being sorted, you can
select watchpoint tracing to provide a continuous update of all changes to the
array.

Procedures

When procedure tracing is enabled, a message of the following form is displayed:
39

Execution control
Entered procedure procedure name

This can be useful if you wish to quickly locate the procedure where a fault is
occurring.

Event breaks

When a Wimp event break occurs execution is not halted. Instead of stopping at
the breakpoint a decoded form of the event data is displayed and execution
continues.

SWI breaks

When a SWI break occurs execution is not halted, a message is displayed:

Break at SWI SWI Name

The SWI is then executed and execution continues after the SWI breakpoint.

Choosing Trace from the debugger’s menu produces the following dialogue box:

Select the set of actions you are interested in tracing and click on OK. A message
confirming your selection will be displayed. You won’t notice the effects of
enabling procedure tracing until execution of the debuggee is resumed.
40

Desktop debugging tool
Program examination and modification

Display

This option allows you to display information about the program being debugged.
You can examine source text, instruction disassembly, variable contents, memory
contents, stack backtrace information, register contents and low-level symbol
values. Choosing Display produces the following dialogue box:

You can use Ctrl-D as a short cut to produce this display.

Select the item you want information about. The Source, Expression, Symbols,
Disassembly and Memory icons use the contents of the writable icon to
determine what to display. Each icon is described in turn below.

Source

Displays the specified source file in the debugger Context window. You can specify
a source line number at which to start the display. The syntax for the filename and
line number is:

filename[:line]

(that is, a valid RISC OS filename optionally followed by a colon (:) and a line
number). The line number defaults to 1 if not specified. The filename does not have
to be a source file used to generate the program you are debugging: you can
display any file you like.

Expression

The writable icon should contain an expression name. The syntax for entering
expression names is described in the section Specifying program objects on page 26.
The expression is displayed in the debugger Status window.
41

Program examination and modification
Complex expressions such as C structs or arrays are displayed in structured format,
nested substructures are indented to indicated the level of nesting. Character
pointers and arrays are displayed as strings if a terminating 0 is found within the
first 80 characters and there are no intervening non-graphic characters apart from
newline and carriage return, which are displayed as \n and \r. For example, the
following structure:

typedef struct _HotSpot
{
 struct _HotSpot *next;
 BBox box;
 char *command;
 char *name;
 ComponentId id;
} HotSpot;
HotSpot *button;

would be displayed as:

Arguments

Arguments displays all the arguments to the current procedure. The arguments are
displayed as if each individual argument had been displayed using the Display
Expression facility described above.

If you want to examine the arguments in an outer scope (i.e. in the procedure
which called this procedure or the procedure which called that …) you can use the
Context item on the main menu to change the current context to that of one of the
calling procedures, and then select Arguments to display the arguments of that
procedure.

Locals

Locals is very similar to Arguments. It displays all local variables (including the
arguments) in the current procedure.
42

Desktop debugging tool
Backtrace

Backtrace displays a list of procedures in the call chain from the current
procedure back to the program entry point.

Procedures which have been compiled with debugging information are displayed
in the following form:

procedure, line line of file

Those which have been compiled or assembled without debugging information
look like this:

PC = address (procedure + offset)

Procedures in the Shared C Library will appear as:

PC = address

A typical backtrace might look something like this:

Symbols

Symbols displays low-level symbols generated by the linker when linking with
debugging enabled. The writable icon gives a comma-separated list of symbols to
be displayed. The symbols and their addresses are displayed in the debugger’s
Status window.

You can use the following wildcard characters in symbol names:

● A star (*) matches 0 or more characters

● A hash (#) matches any single character.

For example:

kernel* would list all the kernel routines
(e.g. _kernel_swi)

$$$$* would list all the linker generated symbols
(e.g. Image$$RO$$Base and C$$code$$Base).
43

Program examination and modification
Disassembly

This displays a symbolic instruction disassembly in the debugger’s Context
window. The writable icon should contain a low-level expression which evaluates
to a memory address indicating where the disassembly should start. The syntax for
low-level expressions is described in the section Specifying program objects on
page 26.

Memory

This displays a memory dump in the debugger’s Context window. The writable icon
should contain a low-level expression giving the memory address.

Registers

This displays the contents of ARM user registers 0 - 15 and the flags in R15.

FP Registers

This displays the contents of floating-point registers 0 - 7 and the flags in the
floating-point processor status word.

The Base writable icon gives the numeric base to be used when displaying
Variables, Arguments, Locals, Symbols and ARM registers. If this writable icon is
left blank a default of decimal or hexadecimal is used depending on what is being
displayed.

The Update box applies to Variables, Locals, Arguments, Backtrace, Registers and
FP Registers. When Update is selected and one of these items is displayed, the
item is added to a list of items to be displayed whenever the debugger stops
execution (for example, at a breakpoint). There is no way to remove items from this
list once they have been added to it.

Change

Change allows you to alter variable, registers or memory contents. Choosing
Change produces the following dialogue box:
44

Desktop debugging tool
The Variable, Register and Memory radio buttons indicate what is to be changed.
The Name writable icon indicates which variable, register or set of memory
locations is to be changed. The New contents writable icon gives the new
contents. Clicking OK makes the change.

Variable

The Name writable icon should contain a variable name as described in the
section Specifying program objects on page 26. Only simple variables such as integers
and pointers or floating-point variables may be changed. The New Contents
writable icon should contain the new value for the variable, floating-point values
are specified in normal C floating-point format.

Register

The Name writable icon should contain a register name. Valid register names are
R0 - R15, SL, IP, SP, LR, PC and F0 - F7. The New Contents writable icon should
contain a low-level expression or floating-point constant, depending on the type of
register being changed. Low-level expressions are described in the section
Specifying program objects on page 26.

Memory contents

The Name writable icon should contain a low-level expression which evaluates to
a memory address. The New Contents writable icon should contain a
comma-separated list of low-level expressions, which are placed in successive
memory words starting at the memory word specified in the name writable icon.
The syntax for low-level expressions is described in the section Specifying program
objects on page 26.
45

Options and other commands
Options and other commands

The Options item on the debugger main menu produces the following dialogue
box:

Source-level debugging

This option enables the display of source information in the debugger Context
window. If this option is deselected, a disassembly of the ARM instructions
corresponding to the source text will be displayed.

Machine-level debugging

This option enables the tracing of ARM instructions when trace execution is
selected.

Memory protection

This option enables or disables protection of sensitive areas of memory. When this
option is enabled zero page (0 - &7fff) is protected against being written to by the
debugee and the debuggee’s code area is protected against writing.

Source line numbers

This option enables or disables the display of line numbers in source text displays.

Stop at entry

When this option is enabled, the debugger automatically tries to set a breakpoint
on procedure main when a debugging session is started. This allows you to use
Continue on the debugger main menu to get rapidly to the start of your source
code.
46

Desktop debugging tool
RISC OS bindings / Arthur bindings

This option is provided for backward compatibility.

Command line

This writable icon allows you to change the command line passed to the debuggee.
The existing command line is displayed in the icon and may be edited. Note that
the first word of the command line should be the program name.

Base

The Base writable icon gives the default numeric base when displaying or entering
numbers.

Source tree

Compilers such as Acorn’s C may put relative filenames in the debugging
information (e.g. c.display or ^.prog.c.main). The debugger needs to know
where these files can be found. By default it assumes the source files reside in the
directory from which the program image was loaded. This writable icon allows you
to change this default. It accepts a comma-separated list of directory names, each
one ending in a full stop (immediately before the comma).

This could be used when debugging a library whose source is held in a directory
different to that of the debugee program source.

Log

Log allows you to record any information output to the debugger Status window to
a text file. Choosing Log produces the following dialogue box:

Enter the name of the file into which you wish to log output. The file will be opened
as a new log file. Any previous contents of the log file will be overwritten. If a log
file was previously open it will be closed when the new log file is opened.
47

Options and other commands
Find

Find allows you to find a sequence of bytes, words or characters in the application
workspace. Choosing Find produces the following dialogue box:

Word or Byte

The writable icon should contain a comma separated list of low-level expressions
giving the word or byte values to be found.

String

The writable icon should contain the sequence of characters to be found, the
sequence should be entered without quotation marks of any kind.

All occurrences of the byte, word or character sequence in the application space
are reported in the debugger Status window.

*Commands

*Commands allows you to access the RISC OS CLI from within the debugger.
Choosing *Commands will lead to the following dialogue box:

Enter the command you wish to execute in the dialogue box and press Return or
click OK. If you are debugging a Wimp task (i.e. a task which has called
Wimp_Initialise) you should precede the command with the WimpTask command,
otherwise the output of any command executed may be displayed in graphics
mode.

If you wish to enter several commands you can enter the Gos command or the
ShellCLI command in the dialogue box.
48

Desktop debugging tool
Help

Help gives interactive help on the debugger. Choosing Help will produce this
initial help window:

Choose the icon corresponding to the topic on which you want help. The help will
be displayed in the Help box above the topic buttons.

Quit

This quits the debugger and returns to the calling environment (generally the
RISC OS desktop).

You can use Ctrl-Q as a short cut for Quit.
49

An example debugging session
An example debugging session

The following example debugging session shows how DDT might be used to fix a
rather bug-ridden file sorting tool written in C. The source is given here with line
numbers for reference later in the chapter. The source, along with the other files to
make the application, can be found in Sort, which is in the
Sources.DDE-Examples.Debug.Sort directory.

 1 #include <stdio.h>
 2 #include <stdlib.h>
 3 #include <string.h>
 4 #include <stdarg.h>
 5
 6 #include "kernel.h"
 7
 8 #define READATTR 5
 9 #define READFILE 16
 10 #define WRITEFILE 0
 11
 12 #define FILEFOUND 1
 13
 14 static void fail(char *errmsg, ...)
 15 {
 16 va_list ap;
 17
 18 va_start(ap, errmsg);
 19 vfprintf(stderr, errmsg, ap);
 20 va_end(ap);
 21 exit(1);
 22 }
 23
 24 /* See Sedgewick: Algorithms 2nd edition P 108 */
 25 static void sortstrings(char *a[], int n)
 26 {
 27 int h, i, j;
 28 char *v;
 29
 30 h = 1;
 31 do
 32 h = h * 3 + 1;
 33 while (h <= n);
 34 do {
 35 h = h / 3;
 36 for (i = h + 1; i <= n; i++) {
 37 v = a[i];
 38 j = i;
 39 while (j > h && strcmp(a[j-h], v) > 0) {
50

Desktop debugging tool
 40 a[j] = a[j-h];
 41 j -= h;
 42 }
 43 a[j] = v;
 44 }
 45 } while (h > 1);
 46 }
 47
 48 void sortfile(char *infile, char *outfile)
 49 {
 50 _kernel_osfile_block finfo;
 51 int size;
 52 char *finbuff, *foutbuff;
 53 char *cp;
 54 int l, linestart;
 55 char **lbuff;
 56 int i;
 57
 58 if (_kernel_osfile(READATTR, infile, &finfo) !=
 FILEFOUND)
 59 fail("Error opening %s\n", infile);
 60 size = finfo.start;
 61 finbuff = malloc(size + 1);
 62 foutbuff = malloc(size + 1);
 63 if ((finbuff == NULL) || (foutbuff == NULL))
 64 fail("Out of memory\n");
 65 finfo.load = (int) finbuff;
 66 finfo.exec = 0;
 67 if (_kernel_osfile(READFILE, infile, &finfo) < 0)
 68 fail("Error reading %s\n", infile);
 69 l = 0;
 70 cp = finbuff;
 71 linestart = 1;
 72 for (i = 0; i < size; i++) {
 73 if (linestart) {
 74 l++;
 75 linestart = 0;
 76 }
 77 if (!*cp || *cp == ‘\n’) {
 78 *cp = 0;
 79 linestart = 1;
 80 }
 81 cp++;
 82 }
 83 *(finbuff + size) = 0;
 84 lbuff = malloc(l * sizeof(char *));
 85 if (lbuff == NULL)
51

An example debugging session
 86 fail("Out of memory\n");
 87 cp = finbuff;
 88 for (i = 0; i < l; i++) {
 89 lbuff[i] = cp;
 90 cp += strlen(cp);
 91 }
 92 sortstrings(lbuff, l);
 93 cp = foutbuff;
 94 for (i = 0; i < l; i++) {
 95 strcpy(cp, lbuff[i]);
 96 cp += strlen(cp);
 97 *cp++ = ‘\n’;
 98 }
 99 finfo.start = (int) foutbuff;
 100 finfo.end = (int) foutbuff + size;
 101 if (_kernel_osfile(WRITEFILE, outfile, &finfo) < 0)
 102 fail("Error writing %s\n", outfile);
 103 free(finbuff);
 104 free(foutbuff);
 105 free(lbuff);
 106 }
 107
 108 int main(int argc, char *argv[])
 109 {
 110 if (argc != 3)
 111 fail("Usage: Sort <infile> <outfile>");
 112 sortfile(argv[1], argv[2]);
 113 return 0;
 114 }

The debugging session

Follow the steps below to debug the example program.

1 Compile and link the program by double clicking the MkInstall file provided
in the Sort directory.

Now try running the program:

2 Double click on the !Sort application directory. The Sort tool icon will appear
on the icon bar.
52

Desktop debugging tool
3 Drag the example input file infile on to the Sort tool icon.

This should sort the input file and display a Save as dialogue box, to allow you
to save the sorted result. Unfortunately it doesn’t, instead it produces a
display similar to the following:
Internal error: abort on data transfer at &FC138D1C

Postmortem requested
 Arg2: 0x0000000c 12 -> [0xe59ff2b8 0xe59ff2b8 0xe59ff2b8 0xe59ff2b8]
 Arg1: 0x0000cfd8 53208 -> [0x0000d060 0x0000d064 0x0000d064 0x0000d064]
fc138d14 in function sortstrings
 Arg2: 0x0000b371 45937
 Arg1: 0x0000b341 45889
82d8 in function sortfile
 Arg2: 0x0000b300 45824 -> [0x0000b31c 0x0000b341 0x0000b371 00000000]
 Arg1: 0x00000003 3
83e4 in function main
 Arg2: 0x000083b8 33720 -> [0xe1a0c00d 0xe92dd823 0xe24cb004 0xe15d000a]
 Arg1: 0x0000ada0 44448 -> [0x63412e24 0x436e726f 0x2b2b432f 0x736e492e]
fc129b48 in shared library function
8460 in anonymous function

This is called a symbolic backtrace.

The first line gives a general indication of what might be wrong with your
program. In this case it’s an abort on data transfer; the program tried to access
memory which is outside the addressing range of your computer.

Each line of the form address in function name represents a procedure
call frame on the stack. The first frame on the stack is function sortstrings;
this is where the illegal address was referenced.

This doesn’t look too promising, so try running it under DDT to get more clues
as to what might be wrong:

4 Quit the Sort tool.

5 Construct a debug version of Sort. To do this, double click the
MkDebugInstall file provided in the Sort directory.

6 Ensure that the currently-selected directory is the
Sources.DDE-Examples.Debug.Sort directory so that debugger can
find the source tree. You can do this by clicking the Menu button over this
directory window in the Filer and selecting Set directory.

7 Start the debugger if you haven’t started it already and drag the !Sort
application directory on to the debugger’s icon.

8 Drag the sample input file infile on to the Sort icon on the icon bar. The
debugger’s Context and Status windows should now be displayed.

The program actually crashed in the function sortstrings. Since you want
the program to stop before making the illegal access, you want it to stop at the
beginning of function sortstrings. So:
53

An example debugging session
9 Set a breakpoint on procedure sortstrings:

Bring up the breakpoint dialogue box. Enter the name sortstrings, and
choose at Procedure.

As a general rule this is the best way to start a debugging session. By placing a
breakpoint just before the section of code you think is wrong (or after the code
you know to be correct) you can examine the program state to ensure it is
correct and the step through the incorrect code to find exactly where the error
is occurring.

Tell DDT to start executing your program:

10 Choose the Continue option from the debugger’s menu. The debugger will
stop with the following message:

Break at main, line 110 of c.sort

 The debugger always stops on entry to main. However you want it to continue
until it reaches sortstrings, so:

11 Choose Continue from the main menu again.

This time the debugger displays the following message:

Break at sortstrings, line 30 of c.sort

The Source window should contain the source for the start of function
sortstrings, with the execution location indicator (=>) pointing to the first
source line of the function sortstrings.

Now you want to examine the program state to ensure it is correct before
continuing. In this case, the most important state information is the function’s
arguments. You can examine them as follows:

12 Choose Display on the debugger’s menu (or use the short cut Ctrl-D) and click
on the Arguments button in the Display dialogue box.

The debugger will display the following in the Status window:

a = 0000d028
n = 12

The two arguments to sortstrings are:

n is the number of strings to sort, in this case 12. This is correct, since there
were 12 names in the input file.

a is a pointer to an array of char *s or strings. The debugger displays the
value of this pointer, i.e. the address of the array.

Note: You may get a different address when you try running this example
depending on the version of the C compiler and library you are using.

Next, examine the individual elements of the array:
54

Desktop debugging tool
13 Enter the array element as it would appear on the left hand side of an
assignment in C in the Display dialogue box, and click on the Expression
button.

To examine element 0, enter a[0]. To examine element 1, enter a[1]. The
debugger will display the array elements as follows:

a[0] = 0000d0b0 -> "Noel"
a[1] = 0000d0b4

The first element was correct: it contained the string Noel, which is the first
name in the input file. However, the second element is a null string. This is
wrong: it should contain the string Edward. This means that the arguments to
sortstrings were wrong. The error therefore occurred earlier, so you want
to try re-running the program under the debugger and setting the breakpoint
earlier:

14 Quit the debugging session and drag the sample input file infile to the Sort
icon to start a new debugging session.

15 Now follow the instructions in step 9 to set the breakpoint at function
sortfile instead of function sortstrings, and continue execution until
the program hits the breakpoint at function sortfile.

The variable lbuff is passed as the first argument (a) to sortstrings.
lbuff is initialised in the loop just before the call to sortstrings.
Therefore you want to set a breakpoint at the start of the initialisation loop:

16 Scroll the Source window up until the initialisation loop comes into view.

From the line numbers in the Source display you can see that the initialisation
loop starts at line 87, with the initialisation of cp. So, set a breakpoint on line
87:

17 Enter 87 in the Breakpoint dialogue box and click on at Line.

18 Now choose Continue from the main menu.

The program will continue executing until it reaches line 87, where it will stop
at the breakpoint. You want to examine each element of the array as it is
initialised, since the array is initialised from the pointer cp. Set a watchpoint
on cp:

19 Enter cp in the Watchpoint dialogue box and click on on Variable.

20 Choose Continue again. The debugger will stop with the message:

Watchpoint on cp changed at sortfile, line 88 of c.sort
New contents: 0000d0b0 -> "Noel"

This is correct, so:
55

An example debugging session
21 Choose Continue again. The debugger will respond with:

Watchpoint on cp changed at sortfile, line 90 of c.sort
New contents: 0000d0b4

This is wrong: it should contain the string Edward. Look at the line which
updated the value of cp:

90 cp += strlen(cp);

This is supposed to update cp to point to the next string in the list of strings
to be sorted. It does this by adding the size of the string pointed to by cp into
cp. Unfortunately, it miscalculates the size of the string by omitting to take
into account the 0 byte at the end of the string. This means that the second
and all subsequent strings are treated as null strings, because they are
pointing to the 0 byte at the end of the previous string instead of the start of
the string.

To fix this:

22 Quit the debugger and the Sort tool.

23 Edit the file c.sort and change line 90 to read:

90 cp += strlen(cp) + 1;

24 Recompile c.sort using MkDebugInstall.

Now try re-running the program:

25 Double click on the !Sort application directory and drag the file infile to
the Sort tool icon, then choose Continue twice on the DDT menu to run Sort.

The result is the same as when you first tried running it: you get the same
exception, although this time trapped by DDT rather than generating a
backtrace, so obviously the fix applied to line 90 didn’t fix the problem. So, try
running it under the debugger again:

26 Quit the Sort tool frontend.

27 Drag infile to the Sort tool icon.

28 Set a breakpoint on function sortstrings and choose Continue.

The debugger will stop when it reaches main.

29 Choose Continue again, and the debugger will stop at the start of
sortstrings.

Examine the arguments. All being well they should look something like this:

a = 0000d02c
n = 12
56

Desktop debugging tool
30 Display the individual elements of a by entering a[0] etc., in the Display
dialogue box and choosing Expression.

Do the same for a[1] and a[11]. The display should look like this:

a[0] = 0000d0b4 -> "Noel"
a[1] = 0000d0b9 -> "Edward"
a[11] = 0000d0f3 -> "Martin"

They’re correct now, so something must be wrong with the sort algorithm. So,
try setting a breakpoint on the inner while loop:

31 Scroll the source display to find the line number; it should be line 39. Enter 39
in the Breakpoint dialogue box and click on at Line and continue execution.
The debugger should display:

Break at sortstrings, line 39 of c.sort

Examine a few variables:

32 Enter j in the Display dialogue box and choose Expression; then do the same
for h. The debugger should display:

j = 5
h = 4

These are both correct, so look at the contents of a[j-h]:

33 Enter a[1] in the Display dialogue box and choose Expression. The debugger
should display:

a[1] = 0000d0b9 -> "Edward"

The shellsort algorithm should be comparing against the first string (i.e.
Noel). It is not, so this is wrong. Looking closely at the algorithm you can see
that it has been written assuming array indices start at 1, whereas in C they
start at 0.

To fix this, you could subtract 1 from each array index. However you just want
a quick fix to see if it works, so:

34 Add the following line at the start of the function after line 29:

30 a--; /* Quick hack to make array 1 origin */

35 Compile the program without debugging enabled by using MkInstall, and
try running the result.

All being well, the program should run to completion and produce a Save as
dialogue box for the output. You can just click the OK button to save it, or you may
like to drag it to the editor icon to load it into the editor to check that it has been
sorted correctly.
57

An example debugging session
58

4 Make

he Make application provides a simple way to construct Makefiles for building

multiple-file programs. Although this tool is still provided, its use is no longer

recommended. Instead, consider using AMU with the Shared Makefiles. All of the
examples in Sources.DDE-Examples that have Makefiles have been updated
to build in this manner, and provide useful examples of how to do this. See the
chapter AMU on page 121 for more information.

Make aids the programmer in the construction and maintenance of multiple-file
programs, which can be combined to form any number of final targets (for
example, libraries, modules, and application programs). The set of final targets
and the files from which they are constructed are known as a project (see later for a
more detailed description of this term). The facilities provided for a project include

● automatic construction of Makefiles

● automatic maintenance of Makefiles to track changes made to sources and the
addition/deletion of source and object files to or from a project

● setting options using dialogue boxes for the tools used to convert source files
to object files (e.g. C compiler or ObjAsm options)

● pre-emptive multitasking of the Make process when constructing final targets,
including the ability to pause, continue, or abort it at any time

● display of the output of tools used to make a final target, in a scrollable,
saveable window.

Invoking Make

Make can be invoked in two ways; by double-clicking on the Make icon from a
directory display, or by double-clicking on a file of type Makefile (0xFE1). In the
latter case this will also run the Acorn Make Utility (AMU) tool to make the first
target found in the chosen Makefile.

Clicking Menu on the Make icon gives the menu shown on the left.

Info shows the normal information box about the application.

Options allows the setting of auto-run and display options.

Open is used to open a dialogue box for a given project.

Quit quits Make.

T

59

Using Make
These are described more fully in later sections.

Using Make

To use Make efficiently it is necessary first to understand how to create and
maintain a project.

Projects

A project is made up of a collection of source and object files, which combine to
form a number of final targets. The life cycle of a project will typically involve the
creation and maintenance of the project, the production of final results, and finally,
if required, the removal of the project from Make’s control. The details of these
steps are more fully described in later sections, but here we give an overview of
their operation.

When a new project is created, you give it a unique name, and save its associated
Makefile to disc. The persistent state of a project is held in a Makefile, which is
automatically maintained by Make, with the option that it can be textually edited
for customisation to a particular projects requirements. To achieve this automatic
maintenance, the Makefile is divided into sections which are delimited by active
comments (i.e. lines beginning with a (#), which are otherwise ignored by the AMU
program).

The files which make up the project can reside anywhere on disc (or on a network)
and can be added to, and removed from, the project by dragging their filer icons
onto a dialogue box representing that project.

Final targets for the project are created by clicking on Make in the dialogue box
relating to that project; the targets will be saved in the same directory as the
Makefile for the project.

Under the desktop the concept of current directory has no sensible meaning, Make
therefore uses the work directory in which the Makefile for a project has been saved
as a prefix for all filenames used in the project. This prefix is denoted by the at
symbol (@).
60

Make
Clicking Menu on a project dialogue box gives the menu shown below, which is
used to further tailor the project. References to this menu are made in a later
section on maintaining projects.

Creating new projects

In order to create a new project, you should click Select on the Make icon on the
icon bar. This will display the New Project dialogue box as shown below, which
allows you to enter information for the new project:

There are three writable icons in the New Project dialogue box which you must fill
in before a new project can be created. These are:

Name you should fill this in with the name of the project. This name will be
used to identify the project in the Open menu as described later.

Target you should fill this in with the name of the main target to be created
from this project. For example, if you were creating an application the
target name would be !RunImage, if you were creating a module the
target name would be the module’s name (e.g. FrontEnd).

Tool you should fill this in with the name of the tool used to construct the
main target. For an application this could be Link, or in the case of a
library this could be Libfile.

Note: Make requires this tool to be one which takes intermediate files
and creates a final object. Such tools are Link (for a module or
application), LibFile (for a library), Squeeze (for a squeezed application)
or ModSqz (for a squeezed module).
61

Using Make
Having filled in these three boxes, you must then save the Makefile which will be
used to hold all information for this project. This is accomplished either by
dragging the Makefile icon to a directory viewer (having optionally changed the
leafname from the default Makefile), or by typing in a full pathname and clicking
OK. The directory in which the Makefile is saved is important. This directory is
where the final targets for the project will be created, since each target will be
saved in the @ work directory (see the section Creating a final target for a project on
page 67 for an explanation of this). The sources for the project can be stored
anywhere, since they will always be referenced relative to @. If any of the Name,
Target or Tool icons have not been correctly filled in then an error is reported, and
the Makefile is not created.

When this process has been completed, the newly created project becomes one of
those maintained by Make, until it is explicitly removed (see the section Removing
projects on page 66 for how this is done). The dialogue box which is used to
maintain this project then appears, with the project’s name in its title bar. The
project can then be maintained as described below.

Maintaining projects

To maintain a project it is necessary to understand how to open and close projects,
and how to specify the targets for a project.

Opening a project

Make keeps a list of all projects which it is maintaining at any one time. This list is
shown when you enter the Open submenu from Make’s application menu. When
no projects are known about, this menu item is unselectable.

The list of project names is shown with the most recently registered project at the
bottom. Clicking on a project name in this list will open a dialogue box for that
project, with the name of the project in its title bar; if the project was already open,
62

Make
then the dialogue box is brought to the front of the WIMP’s window stack. If the
project is being opened for the first time, then the directory containing the
Makefile for this project is also opened. The dialogue box is shown below:

This dialogue box can be used to add new members to the project, remove
members which are no longer required, make final targets, and select the current
final target to which these operations refer. These are described in more detail in
later sections.

Adding and removing members

When you have written a new source file or created a new object file which you wish
to include in a project, you should drag the filer icon for that file to the icon marked
Insert in the project’s dialogue box menu. Typically, the only object files which you
will need to insert in a project are external libraries. Any number of files can be
dragged in this way to Insert, where their full pathnames are displayed, provided
that the number of characters displayed does not exceed the buffer for the icon
(4096 characters by default, but this can be changed by using a Wimp templates
file editor).

Once you are satisfied that this is a list of all the files to be added to the project,
click on OK to the right of Insert. The insertion will then take place. An asterisk
appears in the title bar of the project dialogue box to indicate that this project has
been modified since its Makefile was last saved.

If you wish to remove members from a project, follow the same procedure as that
described for insertion, but drag file icons to the Remove icon instead, and click on
OK to the right of Remove. Again an asterisk will appear in the project’s title bar, to
indicate that a modification has been made.

Note that insertion and removal applies only to the currently selected target when
used in conjunction with multiple-target projects (see the section Multiple targets on
page 64 for more details).

Make uses the following rule for dealing with files dragged to Insert: if the filename
has, as its last but one component, a string (usually just one character) which
corresponds to one of those registered by a translation tool, then it is assumed to
63

Using Make
be a program source file and a rule is constructed to make it into an object file;
otherwise it is assumed to be an object file (such as a library) and will just be
inserted into the list of objects which go to make up the current final target.

Listing members

A list of the members which have been added to a project (and not subsequently
removed) can be obtained in a scrolling text window by selecting the List
members option from that project’s dialogue box menu. The filenames in this list
are expanded to full pathnames, whereas they will appear relative to @ in the
Makefile for the project.

Touching members

You can force a member of the project to be time-stamped using the Touch option
in a project’s dialogue box menu:

In the Touch dialogue box, you can type (or drag to it) the filename(s) of the file(s)
to be touched (either relative to @ as it appears in the Makefile, or as a full
pathname), and then click on OK. If you wish to touch all source members of the
project, then click on All; in this case any filename in Files is ignored.

Multiple targets

When a project is first created, it has just one final target - the one whose name is
entered in the Target icon in the New Project dialogue box. This name will also
appear in the Target icon in a project’s dialogue box when that project has been
opened. This target is referred to as the current target, and it is the target which will
64

Make
be made when you click the Make icon. The current target is also the one to which
members are added or removed when you enter filenames in the Insert and
Remove icons from a project’s dialogue box.

In order to add a new target, you should use the Add target option from a project’s
dialogue box. In the Add target dialogue box you must enter a name for the new
target, and the name of the tool which is used to construct that target (e.g.
MyLibrary and LibFile), as shown above.

Targets created in this fashion can be removed by choosing Remove target in the
project menu. Remove target always applies to the current target.

When a project has its dialogue box open, the list of final targets can be traversed
using the up and down arrow icons (next to the Target icon). You will notice that
any targets which you manually insert in the user-editable section of the Makefile
will also appear in the project dialogue box. This is so that you can select them as
the target to be made when clicking on the Make icon.

This can be used to create a ‘squeezed’ image by doing the following:

● When you first create the project use a final target name such as !RunImageU
for the unsqueezed binary. Insert all your sources and library files to this
target.

● Then add a target (called, for example, !RunImage) with its ‘tool’ set to
Squeeze.

● Insert the @.!RunImageU as the only member for this target.

If you used the example names above, and you now make the target !RunImage,
you will get a squeezed final binary.

Setting tool options

In order to make final targets and object files which will combine to make those
final targets, a number of tools such as compilers, assemblers, linkers and library
constructors will be used. These tools will typically have a set of options which are
normally specified from a dialogue box when using the tools under the control of
65

Using Make
the FrontEnd module. It is possible to set the options for a particular tool’s use
under Make (for a given project) by following the Tool options submenu from the
project’s dialogue box menu.

This will show a list of all the tools which have registered themselves for use with
Make (for example, CC, ObjAsm, Link etc.). Clicking Select or Adjust on a tool’s
name in this list will result in the options dialogue box for that tool being
displayed. This dialogue box can then be used to set the options for the tool; these
will be translated into command-line options and entered into the toolflags
section of the Makefile for the project.

Removing projects

A project can be removed from the list of projects maintained by Make by choosing
Remove project from the project’s dialogue box menu. This simply means that it is
removed from the list of projects which can be opened from Make’s Open
submenu; the Makefile for the project is still retained.

You will also be asked if you want to remove the files which store the toolflags for
the project. If you intend never to reinstate this project as one maintained by Make,
then answer Yes to this query. If you are just temporarily removing this project
from the list, then answer No, so that the toolflags state for this project is saved.

If you later wish to reinstate a removed project, this can be done by dragging the
Makefile for the project onto the Make icon.
66

Make
Creating a final target for a project

There are two ways of creating a final target for a project:

● If you click on Make in a project’s dialogue box, Make will make the target
which is currently showing in the Target icon. An alternative target can be
selected by clicking the up and down arrow icons to move through the list of
possible final targets.

● If you double click on a filer icon of type Makefile (0xFE1), and you have
enabled the Auto Run options from Make’s Options menu, then Make will
make the first target that it finds in the Makefile (which will be the target
specified when the project was created).

In both of the above cases, the amu program is run pre-emptively using the
TaskWindow module to make the chosen target. The space available to load and
start up amu is determined by the Wimp Next slot. If you get errors such as:

No writable memory at this address

when you run a Make job, try adjusting the Next slot.

The output from this process appears by default in a scrollable, saveable text
window (or in a summary dialogue box if this option is selected in the Display
submenu):

This window is read-only, you can scroll up and down to view progress, but you
cannot edit the text without exporting it to an editor. To indicate this, clicking
Select on the scrollable part of this window has no effect.

Clicking Adjust on the close icon of the output window switches to the output
summary dialogue box:
67

Using Make
This box presents a reminder of the tool running (Make), the status of the task
(Running, Paused, Completed or Aborted), the time when the task was started and
the number of lines of output that have been generated (i.e. those that are
displayed by the output window). Clicking Adjust on the close icon of the summary
box returns to the output window.

Both the above output displays follow the standard pattern of all the
non-interactive desktop tools. The common features of the non-interactive
desktop tools are covered in more detail in the chapter General features on page 103.
Both output displays, and the menus brought up by clicking Menu on them, offer
the standard features allowing you to abort, pause, or continue execution, save
output text to a file, or repeat execution.

Saving a project without Making it

If you have made changes to a project, and wish these to be written back to the
project’s Makefile without actually making a target, then click on Save in the
dialogue box.

Setting Make main options

The Options submenu from the Make icon bar menu allows you to set two options:
Auto Run and Display.

Selecting Auto Run means that when you double-click on a file of type Makefile
(0xFE1) from a directory display, the AMU program is immediately invoked to
make the first target found in the Makefile; if you do not select Auto Run, then
double-clicking on a Makefile merely adds the project to Make’s list of maintained
projects (if it is not already there), and opens the dialogue box for that project
(bringing it to the front of the WIMP’s window stack if it is already open).

In the Display submenu, you can choose whether the output of all Make processes
is displayed in a scrolling text window or in a summary dialogue box.

Text-editing Makefiles

You can use a text editor to customise a project’s Makefile. There is a section of the
Makefile, following the active comment User-editable dependencies,
which is left untouched by Make. All other sections of the Makefile will be
68

Make
over-written and so should not be edited using a text editor (unless you are
thoroughly familiar with the operation of Make). The full format of a Makefile is
described in Makefile format on page 69.

Note that the actual Makefile is only read in if Make is re-loaded and the project
then opened, just re-opening the project without re-loading Make is not sufficient.

A good example of how this could be used, is to create a rule which removes an
application’s binary image and the object files used to create it, so that the next
‘make’ will remake all objects. This is done by entering in the user-editable section
the following lines:

clean:; remove !RunImage
 wipe o.* ~cf

Using conventional Makefiles

If a file of type Makefile, which does not comply to the Makefile format, is
double-clicked, or if a file of type Text or Data is dragged onto the Make icon, it is
not registered as a project. Instead Make runs the AMU program with this file as its
input Makefile. This allows the use of Makefiles from other systems, and ones
which do not fit into the project-oriented way of working required by Make.

Makefile format

The Makefile which is used to maintain a project is a file of type 0xFE1
(Makefile), and contains normal ASCII text. This text is arranged into a number
of sections which are separated by active comments. For a detailed description of
Makefile syntax see appendix Makefile syntax on page 209.
69

Makefile format
Below, we describe each of these sections, beginning with their respective active
comments:

Project project_name: This gives a name to be used for the
project in the Open submenu.

Toolflags: This section has a set of default flags for
each of the tools which have registered
themselves with Make, for automatic
inclusion in a Makefile. The tool will have
done this by writing lines (described in
the Programmer interface on page 71) into:

<Make$Dir>.choices.tools.

Each macro in the Makefile will be of the
type:

toolflags = . . .

e.g. ccflags = -c

Final targets: This section contains the rules for making
the final targets of the project. For
example:

!RunImage:link $(linkflags)

This information is obtained when the
project was created (from the Name and
Tool icons in the New Project dialogue
box).

User-editable
dependencies:

This section is left untouched by Make,
and can freely be edited by the user. This
allows rules to be added which are
specific to a particular project; for
example, it may copy sources from a file
server to your local disc, before doing a
compilation.
70

Make
Programmer interface

The following information is given for programmers wishing to add new desktop
tools to be used with the Make application.

If you wish to use a tool with Make, which does not come with Acorn C/C++, you
can use either of the following two methods:

● Write a description or Setup file (see appendix FrontEnd protocols on page 231)
for the tool for use by the FrontEnd module and register it with Make as
described below in the section Registering command-line tools with Make.

● Write a WIMP frontend for the tool which complies with the details given
below in the section Message-passing interface for setting tool options.

Registering command-line tools with Make

A command-line tool which will be run under the control of the FrontEnd module
(for setting its options in a Makefile), will need to append lines of the following
format to the file <Make$Dir>.choices.tools:

toolname Name of tool

string Extension

flags Default flags for use by Make

rule Rule for converting sources to objects

pathname Full pathname of file containing application description

pathname Full pathname of file containing Frontend setup commands

All the above lines should be terminated by the C newline character \n.

Static dependencies: This section contains rules for making an
object file from corresponding source. It
does not refer to include files etc.
(described in Dynamic
dependencies).

Dynamic dependencies: This section contains the rules which are
created by Make by running the relevant
tool on a source file to ascertain its
dependencies (e.g. cc -depend).
71

Message-passing interface for setting tool options

When the user selects a tool name from the Tool options submenu, Make issues a
star command to get the frontend module to start up a Wimp frontend for the
chosen tool (without an icon appearing on the icon bar). The setup dialogue box
for that tool is then displayed, with the Run icon replaced by an OK box.

The user can then set options for that tool. A suitable set of command-line options
is returned by the generalised frontend, to be used as that tool’s toolflags entry
in the Makefile.

If the star command fails (presumably because the frontend module is not active or
because there is no description for the chosen tool), then Make broadcasts a WIMP
message (recorded delivery), to see if any application can deal with the request.
This is to allow expansion of the system to incorporate other WIMP-based
compilers, assemblers, etc., which other parties wish to provide for use under the
control of Make.

The WIMP message has the format:

If you have written an application which needs to respond to this message, then
your application should:

1 Acknowledge the WIMP message. You must also store the taskhandle of Make.

2 Display a dialogue box to allow the user of your application to set options
appropriately.

3 When the user has chosen the options, send back a WIMP message to Make,
with the following format:

Byte offset Contents

+16 DDE_CommandLineRequest (reason code) (0x81401)

+20 Make’s internal handle

+24 … null-terminated application name

Byte offset Contents

+16 DDE_CommandLineResponse (reason code) (0x81400)

+20 Application’s handle

+24 to +36 Application’s name

+36 … null-terminated command-line options
72

5 SrcEdit

rcEdit is a text editor, based on the RISC OS editor (Edit), with extra features to

make it more suitable to create and edit program sources.

You can control SrcEdit from a menu tree, which is described fully in this chapter.
However, many menu choices are available directly from the keyboard; once you
are familiar with SrcEdit, you may find that you prefer this method. These keystroke
equivalents are listed later in this chapter.

Starting SrcEdit

You can load SrcEdit either by double-clicking on the !SrcEdit icon from a directory
display, or by double-clicking on a file of type Text (0xFFF). You will then see an
icon similar to that of Edit on the iconbar (a pen and program listing).

Typing in text

When you first open a new SrcEdit window, an I-shaped bar – the caret – appears at
the top left of the window. This is where text will appear when you start typing. You
can open more SrcEdit windows, but only one of them will have a caret in it: this is
called the current window. It is also identified by the fact that parts of its border
appear in cream rather than grey. You can type only in the current window.

If you type in some text without putting in any carriage returns, and using the
system font (the default font) you will find that the window scrolls sideways. This is
because the default SrcEdit window is not as wide as the screen. You can break
your text into lines by pressing Return. Alternatively, click on the Toggle Size icon
to extend the window to the full screen and avoid having to scroll sideways. There
is another way of getting all your text into the window, using the Format
command; this is described later.

As you type, you will notice that SrcEdit fills the current line and then carries on to
the next line, often breaking words in the middle. Ignore this for the moment, as
there is a menu option (Wordwrap) that will take care of it, and this will be
described later.

S

73

SrcEdit menus
Inserting and deleting text

If you need to insert or delete text, position the caret where you want to make the
alteration by moving the pointer there and pressing Select. You can insert text
simply by typing. If you want to delete the character to the left of the caret, press
Backspace; to delete a character to the right of the caret, press Delete. If either key
is held down the auto-repeat will come into effect, deleting more characters.

SrcEdit menus

The top level menu for text windows contains the following options:

The Misc menu

This menu offers eight options:

Info tells you about SrcEdit, including the version number of your copy of the
program.

File gives information about the file you are working on, in particular:

● whether it has been modified since you last saved it;

● what type of file it is: for example, a Text File or a Command file (its icon, if it
has one, is also shown);

● its name, including the full directory pathname;

● its size, in number of characters;

● the time and date it was last saved (or if you have not saved it yet, the time and
date when it was first created).

Set type lets you change the file type that will be used when the file is saved.

New view opens a second window on the same text. This allows you to look at two
parts of the same document, and makes many actions such as copying from one
part of a document to another much easier. Remember that you are looking at one
document, not at two separate copies of it: to illustrate this, try looking at the
same part of a document in two views (not the way you will normally use New
view!); enter some changes in the first view and you will see the same changes
appearing in the second view. This is particularly useful with large documents.
74

SrcEdit
Print will print the file. See Printing a SrcEdit file on page 88 for more information.

Column tabs switches on a different type of tab insertion; for more detail see the
section Laying out tables – the Tab key on page 89. When this option is on, it is ticked
in the Misc menu and ColTab appears in the Title bar.

In SrcEdit the default state is to have Column tabs on.

Overwrite, means that each character you type replaces the character at the cursor,
instead of pushing the cursor aside and inserting the new character. When this
option is on, it is ticked in the Misc menu and Overwrite appears in the Title bar.

Wordwrap prevents words being split over line-ends as you type. When this option
is on, it is ticked in the Misc menu and Wordwrap appears in the Title bar. Do not
confuse this option with Wrap, selected from the Display submenu. Wordwrap,
unlike Wrap, inserts a newline character (which is there although you cannot see it
on the screen) when the cursor moves to a new line.

Saving text – the Save menu

The Save menu allows you to save a complete file; you can also save part of a file
using the Select menu.

In order to save a file in the easiest way, you need to have on the screen the
directory display for the directory where you want to save the file.

1 Click Menu over the SrcEdit window, and move to the Save submenu. A
dialogue box appears, containing an icon, the current filename, and an OK
button (as a short-cut you can also display this dialogue box by pressing F3).

2 If the file has not been saved before, SrcEdit offers you a default filename of
‘TextFile’. If you want a different name, use Backspace or Delete (or press
Ctrl-U) to delete TextFile, then type in the name you want.

3 Place the pointer on the icon in the box and drag the icon into the directory
display where you want to keep the new file. An icon for the file then appears
in the directory window.
75

SrcEdit menus
This action assigns a full pathname to the file, as you will see from the Title bar of
the SrcEdit window. When you have made some changes to the text and want to
save the file a second time, use the Save option again, but this time, provided you
want to use the same filename, you can save the file by clicking the OK box. Saving
the file with the same name overwrites your old file with the new information.

You can also save part of the text, typically for printing or transferring to another
application, using the Select/Save option, described in the next section.

Manipulating blocks of text – the Select menu

You can select blocks of text, then manipulate them.

The simplest way to select a block is to position the pointer where you want the
block to start, click and hold down the Select button, then drag the pointer to the
end of the block and release the button. The selected block of text is highlighted.

If necessary, you can then use Adjust to ‘adjust’ the ends of the block. Position the
pointer exactly where you want the block to start or finish, click Adjust and the
block lengthens or shrinks accordingly. This is particularly useful when you want to
select a block that extends beyond the part of the text you can see in the window.
Select a few words or lines at the start of the block, scroll until you can see the
point where you want the block to end, place the cursor there and click Adjust.

Here are some other ways of selecting blocks of text:

To Do this

select a single word double-click Select
select a single line triple-click Select
extend block to whole word double-click Adjust
extend block to include current line triple-click Adjust
76

SrcEdit
Once selected, text can then be saved, printed, case-swapped, cut, copied, pasted,
deleted, de-selected (cleared) or indented by choosing options from the Select
menu:

To Save a selected block, move to Save from the Select menu, and follow the
standard saving procedure. Use this option to copy a selection into another
SrcEdit window; open a new window and drag the icon into it. The copied block will
appear after the current caret position in the destination window. The caret is also
moved to the end of the copied text.

To Print a selected block of text, use Print from the Select menu.

The Swap case option will swap all the lower case letters in the selected text for
upper case letters and vice-versa. Pressing Ctrl-S has the same effect.

Indent allows you to indent a selected block of text. The indent is defined in
character spaces. You can also use Indent to add a text prefix to the beginning of
each line of a block.
77

SrcEdit menus
To indent a selected block of text, call up the Indent submenu:

You can then type in three different types of indent:

● A positive number gives you an indent of the specified width.

● A negative number, –5, for example, deletes the specified number of spaces or
characters from the beginning of the block line; use this to cancel an indent.

● You can also type in text: IGNORE, or Note, for example. This will then appear
at the beginning of every line in the selected block. You can remove this text by
indenting with a suitable negative number.

To make a Copy of a selected block of text, select (highlight) your block of text, then
call up the Select submenu and click on Copy to copy the selected text to the
clipboard. The original block remains selected. You can also copy the block by
pressing Ctrl-C. Next, position the caret where you want the copy inserted, then

indent = 4

indent = –4

indent = Note:

no indent
78

SrcEdit
call up the Select submenu and click on Paste, or press Ctrl-V. Keep clicking on
Paste to make as many copies as you want. To undo an action, choose Undo from
the SrcEdit menu.

To move a selected block of text, select your block of text and click on Cut, or press
Ctrl-X. This moves the selected text to the clipboard, removing it from the screen.
You can then place the caret where you want the text moved to and click on Paste,
again Ctrl-V may be used instead of the menu.

To Delete a selected block of text, click on Delete, or press Ctrl-K. The marked
block then disappears, but note that unlike Cut this does not affect the contents of
the clipboard. (Undo – in the Edit menu – allows you to reverse any changes or
deletions made in the Select menu).

To Select all the text in the document, click on Select all or press Ctrl-A.

To Clear or ‘deselect’ a block of text you have previously selected, click on Clear or
press Ctrl-Z. The highlighted block reverts to normal and the block is no longer
selected.

By selecting some text and choosing the Help submenu, some language-specific
help can be given on that selection. This help is supplied by a language package,
which will have registered a help file containing typically a list of help messages for
keywords of a programming language (e.g. the C printf function).

The Load submenu allows you to load a file into the editor, whose name is given by
the current selection. The rule used to determine the name of the file to be loaded
(assuming the current selection is in a file whose name has the form
DirectoryPath.LanguageExtension.foo) is as follows:

1 Try to load file Selection.

2 If (1) fails try to load file:

DirectoryPath.LanguageExtension.Selection

3 Try to load file DirectoryPath.Selection.

4 If (3) fails try the comma-separated list of directories entered by the user from
the Search Path entry in the Options submenu of SrcEdit’s icon bar menu,
with Selection appended as a leafname.

5 If (3) and (4) fail, try the comma-separated list of directories which are
registered for the current language (see The SrcEdit icon bar menu on page 95 for
details of how to set the current language).

For example, you may have a C source file with a line #include "defs.h". By
selecting defs.h and typing Ctrl-L the header file defs.h will be loaded into
SrcEdit (providing it can be found on one of the search paths).
79

SrcEdit menus
The Edit menu

The first option in the Edit menu is Find. At its simplest, this allows you to locate
any character(s) in your file. You can also use it to replace text with other text. To
make sure that the search is complete, always position the caret at the start of the
file before giving the Find command. In the following description, the text being
searched for is referred to as a ‘string’; it may consist of any sequence of letters,
numbers, spaces or other characters.

Searching for a string of characters

To use Find without doing anything with the found string, choose Find in the Edit
submenu: the Find text dialogue box appears, with the caret in the Find box. Type
in the string you want to locate and press Return. The caret then moves to the
Replace with box.

Since on this occasion you do not want to replace the found strings, either click on
Go, press Return or press F1.

Edit finds the first occurrence after the caret of the word in your file, then displays
the Text found dialogue box, indicating the operations available.

To look for the next occurrence of your string, click on Continue. To abandon the
search, click on Stop or press Escape.
80

SrcEdit
Replacing a string of characters with a new string

To use Find for replacing a string with a new string, go to the Find text dialogue
box as before, but this time, insert the new string into the Replace with box. Then
press Return, and the Text found dialogue box appears.

Click on Replace to substitute the new string for the old string; if you do not want
to change this particular occurrence of the old string, click on Continue and
SrcEdit moves on to the next one.

If you click Last Replace, SrcEdit replaces the currently found instance of the
string, but does not search for further occurrences.

If you click on End of file Replace, SrcEdit finds and replaces all occurrences of
the string from the present one forward to the end of the file, without stopping at
each one for instructions.

Clicking on Undo takes you back to the last string replaced and returns it to the
original version; click Redo to change it back again.

The display at the top of the dialogue box keeps you informed of the state of the
search; if SrcEdit cannot find the word you have specified, it displays the message
Not Found.

Using keyboard short-cuts

Besides using the Select button, you can control all these options from the
keyboard; the particular keys are indicated by the capital letters in the dialogue
box. Press S and the search Stops, press C and it Continues, D and it will reDo, and
so on. Pressing Escape or Return also stops the search and removes the Text
found window.

Other useful facilities

Note that you can use Find to delete strings in a text, by entering nothing in the
Replace with box, and clicking on Replace in the Text found dialogue box, thus
replacing the found string with nothing: deleting it, in effect.
81

SrcEdit menus
There are several other useful facilities in the Find text dialogue box:

● You can carry out the last Find and Replace operation again, by clicking
Previous (or by pressing F2).

● You can specify a string and ask SrcEdit to count the number of times it occurs
in your file (from the caret position to the end of the file) by clicking on Count
(or by pressing F3).

● By default, Find makes no distinction between upper and lower case
characters – Hello will match to both HELLO and hello, or for that matter,
hElLo – you can specifically ask it to match case by clicking next to Case
sensitive (or by pressing F4). Hello will then match only Hello. Case sensitivity
remains selected until you deselect it by clicking again.

Magic characters and their meanings

You can also use the Find facility to search for classes of characters. To activate this
feature, click on Magic characters (or press F5) in the Find dialogue box.

Magic characters are indicated by a \ character, as shown in the lower half of the
dialogue box, which shows you the available characters.

Type these characters in directly as shown in the window.

The magic characters operate as follows:

Character Meaning

\. matches any character at all, including spaces and
non-alphabetic characters.

\a matches any single alphabetic or digit character. So t\ap
matches tip, tap, and top, but not trap.

\d matches any digit (0 to 9).
82

SrcEdit
Wildcarded expressions and their meanings

There is also a facility for specifying wildcarded expressions in search strings. In
order to use this facility, click on Wildcarded Expressions (or press F6) in the Find
dialogue box.

\xXX matches characters by their ASCII number, expressed in
hexadecimal. Thus \x61 matches lower-case a. This is
principally useful for finding characters that are not in the
normal printable range.

\n matches the newline character (remember that to the
computer, this is a character just like any other).

\\ enables you to search for a string actually containing the
backslash character \ while using magic characters. To
search for the strings cat\a or cot\a, enter c\at\\a.

* matches any string (including a string consisting of no
characters at all). This is really only useful in the middle of a
search string. For example, jo*n matches jon, john, and
johaan.

\& is used in the Replace with box to represent the found
string: the string matched in the search. This is particularly
useful when you have used magic characters in the Find
string. For example, if you have searched for t\ap, and you
want to add an s to the end of all the strings found, \&s in
the Replace with box will replace tip, tap and top by
tips, taps and tops.

\cX matches Ctrl-X, where X is any character.

Character Meaning
83

SrcEdit menus
Click on the wildcard character you wish to enter and it is copied into the text box.

The wildcard characters operate as follows:

Character Icon name Meaning

. Any matches any single character.

$ Newline matches linefeeds.

@ Alphanum matches any alphanumeric character. A to Z, a
to z, 0 to 9, and _

Digit matches 0 to 9.

| Ctrl matches a control character. For example, to
search for Ctrl-z, type in |z

\ Normal matches the character following it even if it is a
special character. # would be searched for as
\#.

[] Set matches any one of the characters between the
brackets. This is always case sensitive.

– To [a–z] would match any character (in the
ASCII character set) from a to z.

~ Not does not match character. ~C matches any
character apart from C. This can also be
applied to sets.

* 0 or more matches zero or more occurrences of a
character or a set of characters. T*O matches T,
TO,TOO, TOOO etc.

^ 1 or more matches one or more occurrences of a
character or a set of characters. T^O matches
TO, TOO, TOOO etc.

% Most %c is the same as ^c, except when used as the
final element of a search string. In this case the
longest sequence of matching characters is
found.
84

SrcEdit
The full power of the wildcard facility can be illustrated by a few examples.

● To count how many lower case letters appear in a piece of text:

Find: [a-z]

and click on Count.

● To count how many words are in a piece of text:

Find: %@

and Click on Count.

● To surround all words in a piece of text by brackets:

Find: %@
Replace with: (&)

& Found refers to the whole of the ‘Find’ text. It is used
in the Replace with box to represent the
‘found string’: the string matched in the search.
This is particularly useful when you have used
wildcard characters in the Find string. For
example, if you have searched for t.p, and you
want to add an s to the end of all the strings
found, &s in the Replace with box will replace
tip, tap and top by tips, taps and tops.

? Field If a string was found that matched the search
pattern, then ?n refers to the part of the found
string which matched the nth ambiguous part
of the search pattern, where n is a digit from 0
to 9. Ambiguous parts are those which could
not be exactly specified in the search string;
e.g. in the search string %#fred*$ there are
two ambiguous parts, %# and *$ – which are
?0 and ?1 respectively. Ambiguous parts are
numbered from left to right. (Only to be used in
the Replace with string).

✗ Hex ✗nn matches the character whose ASCII
number is nn, where nn is a two-digit hex
number.

✗61 matches lower-case a. This is principally
useful for finding characters that are not in the
normal printable range.

Character Icon name Meaning
85

SrcEdit menus
and click on GO, then on End of File Replace in the Found dialogue box

● To change all occurrences of strings like #include "h.foo" into
#include "foo.h":

Find: \#include "h\.%@"
Replace with: #include "?0.h"

and click on GO, then on End of File Replace in the Found dialogue box

● To remove all ASCII characters, other than those between space and ~, and the
newline character, from a file:

Find: ~[-\~$]
Replace with:

and click on GO, then on End of File Replace in the Found dialogue box (i.e.
find all characters outside the set from the space character to the ~ character,
and newline, and replace them with nothing). In fact this could be written
without the \, since ~ would not make sense in this context if it had its special
meaning of Not, ie:

Find: ~[-~$]

Other options on the Edit menu:

To send the caret to a specific line of text, use the Goto option. Call up the Goto
submenu and SrcEdit displays a dialogue box:

Type in the line number you want to move to, then click on OK. The dialogue box
disappears, and the screen displays the caret, positioned at the beginning of the
line you have just specified. Note that this option understands ‘line’ to mean the
string of characters between two presses of Return. If you have not formatted your
text, a line in this sense may run over more than one display line.

Undo allows you to step backwards through the most recent changes you have
made to the text. The number of changes you can reverse in this way varies
according to the operations involved.

Redo allows you to remake the changes you reversed with Undo.
86

SrcEdit
CR↔LF allows you to convert the linefeeds in your text to carriage returns (and
carriage returns to linefeeds). Carriage returns appear as the characters [0d] in your
text.

If you convert from linefeeds to carriage returns, the file will be converted to one
continuous line, with carriage return characters inserted where linefeeds have been
removed. Though it is possible to edit a file in this state, you may find that
updating the screen takes a long time. This facility is useful when importing text
from other text editors, which may use carriage returns where SrcEdit uses line
feeds.

Expand Tabs converts each tab character into eight spaces, since some printers
can interpret spaces more easily than the tab character. If you have imported a file
that was produced on a word processor, you may find it uses tab characters. These
appear in the SrcEdit file as the characters [09] in your text.

Format text allows you to reformat a paragraph of text – from the caret to the next
blank line or line starting with a space – so that the lines fill the screen and break
correctly at the ends of words. It is useful for tidying up text after editing. Position
the caret at the beginning of the paragraph, choose Format text in the Edit menu
and enter the number of characters per line you want your text to have in the
Format width dialogue box. Then move the pointer back over the Edit menu and
click on Format text to format the paragraph.

The setting in the Format width dialogue box also controls the length of lines
when you are entering text with Wordwrap switched on.

The Display menu

Display allows you to change the way your text looks on the screen: you can
experiment with fonts, colours, line spacing and margins. However, the features
you select do not form part of the text when you save it.

For example, if you choose New view in the Misc menu, you will have a second
window on your text. If you wish, the Display features in these two windows can be
different; this will not affect the text as such.

Font offers you a choice of fonts (typefaces). System Font is the default style, and
has a fixed character width. For further information on fonts, see the RISC OS User
Guide.

You can use Font size to set the point size (height and width) of the characters
displayed on the screen. Either select one of the sizes indicated or position the
pointer on the bottom (blank) line of the menu; you can then type in another size.

Font height allows you to set the height of the characters displayed on the screen
leaving their width unchanged.
87

Printing a SrcEdit file
Line spacing increases or decreases the space between lines. Its units are pixels
(the smallest unit the screen uses in its current mode). The selected font size
assigns a suitable line spacing; this option is therefore used only to increase (or if
you type a negative number, to decrease) the given spacing.

Margin sets the left margin, again in pixels.

Invert swaps foreground and background colours, so that black text on white
becomes white text on black, and so on.

By default, SrcEdit assumes a text width of 76 characters, but the default window is
not as wide as the full screen. You can of course change the number of characters
per line (by choosing Format text in the Edit menu) or enlarge the window to the
full screen by clicking on the Toggle Size icon. Alternatively, clicking Window wrap
makes your text fit the size of the window. When Window wrap is on, you can
change the window to any size, and the width of the text will change accordingly.
You can revert to the default by selecting Window wrap again.

Foreground allows you to set the text to any one of the sixteen colours, by clicking
on the selected colour square from the palette displayed.

Background allows you to set the window’s background colour, as above.

Work Area allows you to set the extent of your SrcEdit windows so that you can
have windows which are wider than the current screen mode. You can specify a
wider window in terms of System Font characters in the Work Area submenu (the
size of System Font characters is used even if the current font used is a fancy font).
This is particularly useful if you have sources which, for example, are 80 or 132
characters wide and you are viewing them in a mode with a width of 640 pixels or
fewer. The maximum size of window width which can be specified in this manner is
480 System Font characters.

Printing a SrcEdit file

There are two ways of printing a SrcEdit file; however, to use either, you first need
to load a printer driver.

If the file you want to print is already loaded into SrcEdit, you can either choose
Print in the Misc menu, or call up the Save as dialogue box and drag the icon onto
the printer driver icon on the icon bar. This will print the current version of the file,
whether or not it has been saved.

If the file is not loaded into SrcEdit, you can simply drag the file’s icon from its
directory display onto the printer driver icon. You can also do this if the file is
loaded, but if you have made any changes to it since you last saved it, they will not
appear in the printed copy; only what has been saved will be printed by this
method.
88

SrcEdit
Laying out tables – the Tab key

Tables can be set out in two ways using tabs – as regular columns or irregular
columns.

Regular columns

If you want your table to have columns regularly spaced eight characters apart,
select Column tabs in the Misc submenu. The word ColTab will appear in the
window’s Title bar to remind you that you have done this. Pressing Tab will then
cause the cursor to jump to the next tab position. This is very useful for creating
simple tables that will not display much text:

Column Tabs is selected by default in SrcEdit.

Irregular columns

To set out a table with irregular columns, make sure that Column Tabs in the Misc
submenu is not selected. Type in the first line – the column headings, for example
– as you want it to appear, using spaces to separate the text in the columns. Then
press Return. On the next line, pressing Tab will make the cursor jump to the
position underneath the start of the next word in the line above.
89

Reading in text from another file
So, in the following example of a simple diary, the column headings (Person, File,
Task and Reason) were typed in using spaces, then the following lines were typed
in using tabs (including the dashes used as underlines for the column headings):

Note: Both the table layout methods described above will only work with a fixed
width font (e.g. the System font). If you create a table and subsequently display the
screen in another font, the text in the table will not line up correctly with the
column headings.

Reading in text from another file

If you want to add all the text from another file into the file you are currently
editing, position the caret at the point where the inserted text is to appear. Call up
the directory display for the incoming file, and drag its icon into the text window.
The entire contents of the source file are then copied into the destination file at the
caret position. The caret will appear at the end of the text you have inserted.

Bracket Matching

SrcEdit has a useful bracket-matching facility. If you place the caret to the left of an
opening bracket – any of the set (, [, or { – and press F10, the corresponding
closing bracket will be highlighted; similarly by placing the caret to the left of a
closing bracket – any of the set),], or } – and pressing F10, the corresponding
opening bracket will be highlighted. If there is no matching bracket an error
message is generated. This is a particularly useful feature in heavily bracketed
expressions and blocks of code which extend over a large amount of source code.
90

SrcEdit
Throwback

The purpose of throwback is to allow translators (compilers/assemblers) to signal
the editor when they have detected source errors. On receiving such a signal,
SrcEdit displays a window which shows the name of the file which was being
processed when the error(s) were found, the name of the file in which the error(s)
were found, and the relevant line number together with the text of the error
message. Also displayed is the severity level of the error(s): Serious Error, Error, or
Warning. The complete list of errors is shown in a scrollable window. We shall refer
to a single line of this window as an error line. You can scroll through these as with
any normal text window, using the vertical and horizontal scroll bars.

Double-clicking Select on an error line opens an edit window on the appropriate
file (if it is not already open), and highlights the line containing the selected error.
The selected error line is also highlighted in the scrollable error window. Clicking
Adjust on an error line removes it from the list (presumably you have either
corrected the error or have chosen to ignore it). Note that error line numbers refer
to the original source when it was processed. You may, in the course of correcting
errors, insert or delete lines; the position in the source where errors were detected
remains correct despite your edits (provided that the edits are made as a
consequence of throwback).

‘Informational’ throwback is also supported for tools like !Find. The functionality of
such a throwback window is the same as for ‘error’ throwback.

C example throwback session

First double click on !SrcEdit and !CC in a directory display to load them as
applications with icons on the icon bar. Next open the subdirectory
Sources.DDE-Examples.C/C++.CError.c to show the text file HelloW
containing the source of the program example of that name.
91

Throwback
HelloW is a trivial C program which when run prints Hello World on the
screen. It is written to be compiled with an integral link step by CC to form an
executable image file. Its source contains a simple error which will be detected by
CC when you try to compile it.

Drag the source file HelloW to the CC icon to make the CC SetUp dialogue box
appear with the Source writable icon initialised to the absolute file name. Ensure
that the Throwback option is enabled. The correct dialogue box appearance is as
follows:

Click Menu on the setup box and ensure that the Work directory item on the menu
displayed has the default setting of ’^’. Click on the Run button on the SetUp box
to start compilation. This has the normal effect of removing the setup box and
putting the CC output display on the screen, but almost immediately afterwards
the compiler produces an error and requests SrcEdit to display a Throwback error
browser:

Double click Select on the compiler error message:

expected ')' or ',' - inserted ')' before ';'
92

SrcEdit
SrcEdit displays the source file with the offending line that caused the error clearly
highlighted:

Examining this line closely shows that a closing bracket is missing before the
ending semicolon. Insert this bracket in SrcEdit and save the file. Click Select on
the CC icon bar icon and click on Run to repeat the last compilation. If you have
changed the HelloW source correctly, the compilation should now complete with
no errors, hence without bringing back the SrcEdit browser.

When the CC save dialogue box appears, click on the OK button to save the
executable file produced in the directory DDE-Examples.C/C++.CError. Now
double click Select on the newly created executable image file in a directory
display. The image file should run, printing the Hello World message in a
RISC OS run window:
93

Throwback
Assembler example throwback session

First double click on !SrcEdit, !ObjAsm and !Link in a directory display to load
them as applications with icons on the icon bar. Next open a directory display on
the subdirectory Sources.DDE-Examples.ObjAsm.AsmError.s to show the
text file HelloW containing the source of the program example of that name.

HelloW is a simple assembly language program which when run prints Hello
World on the screen. It is written to be assembled to an object file by ObjAsm
then linked to form an executable image file with Link. Its source contains a simple
error which will be detected by ObjAsm when you try to assemble it. The line
containing the error is:

= "Hello World"13,10,0

Examining this line shows that a comma is missing after the close quote. Correct
this and you will then be able to assemble the program without error.

C++ example throwback session

First double click on !SrcEdit and !C++ in a directory display to load them as
applications with icons on the icon bar. Next open the subdirectory
Sources.DDE-Examples.C/C++.C++Error.c++ to show the text file
HelloW containing the source of the program example of that name.

HelloW is a trivial C++ program which when run prints Hello World on the
screen. It is written to be compiled with an integral link step by CC++ to form an
executable image file. Its source contains a simple error which will be detected by
C++ when you try to compile it. The line containing the error is:

cout << "Hello World\n;

Examining this line closely shows that a closing double quote is missing before the
ending semicolon. Insert this double quote in SrcEdit and save the file. Click Select
on the C++ icon bar icon and click on Run to repeat the last compilation. If you
have changed the HelloW source correctly, the compilation should now complete
with no errors, hence without bringing back the SrcEdit browser.

When the C++ save dialogue box appears, click on the OK button to save the
executable file produced in the directory DDE-Examples.C/C++.C++Error.
Now double click Select on the newly created executable image file in a directory
display. The image file should run, printing the Hello World message in a
RISC OS run window.
94

SrcEdit
Saving Options

To retain the same set of options whenever you use SrcEdit, set the menu and
dialogue box entries to the required configuration and then choose Save options
from the SrcEdit icon bar menu. The options you have chosen are then saved in
two files:

<Choices$Dir>.SrcEdit.options
<Choices$Dir>.SrcEdit.liboptions

These files are read when SrcEdit starts up. The options saved are:

Setting options in a SrcEdit window

If you set the Column tab, Overwrite or Wordwrap options in the Misc submenu
in a SrcEdit window, they will only apply to that session of SrcEdit in that window.
To change these three options and retain the new settings whenever you use
SrcEdit, you must set them in the Options submenu in the SrcEdit icon bar menu,
and then choose Save options.

The SrcEdit icon bar menu

Pressing Menu on the SrcEdit icon on the icon bar produces a menu with the
following options:

Info gives you some information about the version of SrcEdit you are using.

Save all files saves all modified buffers, and closes all open windows.

Save choices saves the current settings of all SrcEdit options to file, so that there
is no need to set the environment variables used to maintain these options.

Foreground Colour Window work area width
Background Colour Column tab
Font Width Overwrite
Font Height Wordwrap
Left Margin in pixels Warn multiple edits
Extra spacing between lines Current language
Window wrap Search path
Font name
95

The SrcEdit icon bar menu
The Options submenu allows you to set the following options:

Column tab, Overwrite and Wordwrap are similar to the options on the Misc
submenu in the section entitled The Misc menu on page 74. They are used to set
the default options for all windows opened by SrcEdit.

Warn multiple edits, if enabled, will warn you when you attempt to load a file
which is already loaded in a modified SrcEdit buffer. This reduces the chance
of you accidentally editing two copies of the same file, and then saving one
over the other. In such a case you will be presented with a dialogue box, giving
you the choice of having a read-only copy of the file, a normal editable copy, or
to cancel the load of the file. If you choose to have a read-only copy, then the
SrcEdit window for the document will have Read-Only in its Title bar and you
will be prevented from making any edits to the contents of the document.

The Language submenu gives you a list of any language packages which have
registered themselves with SrcEdit. You can select which of these languages is
current, and this will determine what Help text is available, and also the
default search path used when loading from a selection.

Search path – If you load from a selection (i.e. when you have chosen Load
from the Select submenu), SrcEdit will look in a number of places for the file to
be loaded. You may set a comma-separated list of paths to search by typing
them into the Search path writable icon (described on page 79). Note that
each such path should either be a path variable or be explicitly terminated by
a dot.

The BASIC options submenu provides two options that are used when editing
BASIC files. When the Strip line numbers option is selected, the line numbers
are removed from BASIC files when they are loaded, and when a BASIC file is
saved the Line number increment option determines the line numbers that
are used.

Create leads to a submenu which enables you to open windows for specific types
of file: Text, Data, Command, Obey and Make files.

In addition, the Create submenu allows you to set up SrcEdit Task windows, these
are described in the next section.
96

SrcEdit
Finally, Quit stops SrcEdit and removes it from the computer’s memory, first
presenting you with a dialogue box for confirmation if there are any current files
you have not saved.

SrcEdit task windows

SrcEdit task windows allow you to use Command Line mode in a window. To open
a task window, choose Task window from the SrcEdit application menu. You can
have more than one task window open. When you open a task window, you will see
a * prompt. You can now enter commands in the window just as if you were using
Command Line mode.

The major advantages in entering commands in a task window instead of at the
Command Line prompt are that:

● Other applications continue to run in their own windows while you run the
task (this does mean, though, that the task may run more slowly than it would
using other methods of reaching the Command Line).

● Commands that you type, plus the output (if any), appear in a conventional
SrcEdit window, and may therefore easily be examined by scrolling up and
down in the usual way. When you type into the window, or when a command
produces output, the window immediately scrolls to the bottom of the text.
Anything you type in is passed to the task, and has the same effect as typing
whilst in Command Line mode. You can change this by unlinking the window:
in this case, anything you type in alters the contents of the window in the same
way as any other SrcEdit window, even while a task is running. Any output from
the task is appended to the end.

You cannot use graphics in a task window. The output of any commands that use
graphics will appear as screen control codes in the task window.

The menu for a task window contains the following options:

Kill stops and destroys the task running in the window.
97

SrcEdit task windows
Reconnect starts a new task in the window, allocating memory to the task from the
Task Manager’s Next slot.

Suspend temporarily halts the task running in the window.

Resume restarts a suspended task.

Unlink prevents the sending of typed-in characters to the task. Instead, they are
processed as if the task window were a normal SrcEdit text window.

Link reverses the effect of Unlink.

Ignore Ctrl, when selected, prevents any control characters generated by the
program from being sent to the window. It also intercepts Ctrl-C and Ctrl-V
keystrokes so that instead of being passed on to the task they can be used to copy
and paste text (see Task windows and the clipboard).

Edit leads to the normal SrcEdit menu. Although this makes available most of
SrcEdit’s features, you cannot use facilities such as the cursor keys or keys such as
Page Up and Home while you are using a Task window.

Task windows and the clipboard

Text in a task window can be copied to the clipboard in the normal way by selecting
it and choosing Copy from the Select submenu, or by pressing Ctrl-C if Ignore Ctrl
is selected.

You can paste input to a linked task by selecting Paste from the Select submenu,
or by pressing Ctrl-V when Ignore Ctrl is in force. The text on the clipboard is sent
to the task as if it was being typed.

Some guidelines and suggestions for using task windows

In order to use a task window, you will need to be familiar with Command Line
mode. There are some commands which you will find are more useful in a task
window than they are directly from the Command Line. In particular:

*WimpSlot min [max] can be used to adjust the amount of memory available
to the task, which will otherwise start up using the Next space allocation. If you
want to remove all the memory allocated to a task without closing its window or
destroying the task, use the command *WimpSlot 0 0.
98

SrcEdit
*Filer_OpenDir path opens a new directory display for the directory with the
given path. The path must start with a filing system name. For example:

adfs::DHarris.$.Research

The command *Spool should not be used from a task window. Because its effect
is to write everything that appears on the screen to the spool file, using *Spool
from the desktop will produce unusable files full of screen control characters.
There is, in any case, no point in using *Spool, since the output from the task
appears in the window, and can be saved using SrcEdit as normal.

When you run a command in a task window, the computer divides its time between
the task window and other activities running in the desktop. You should note that
some time-consuming commands, for example, a *Copy of a large file, may
prevent access to the filing system that they use until the command is complete.

Note that Command Line concepts such as current directory become relevant
when you are using Task Windows.
99

Keystroke equivalents
Keystroke equivalents

On occasions, it can be convenient to use the keyboard instead of the mouse,
especially once you are familiar with SrcEdit through its menus.

When editing

←, →,↑, ↓ Move caret one character left, right, up or down.

Shift-←, Shift-→ Move caret one word left or right.

Shift-↑, Shift-↓ Move caret one windowful up or down.

Ctrl-↑ Move caret to start of file.

Ctrl-↓ Move caret to end of file.

Ctrl-←, Ctrl-→ Move caret to start or end of line.

Ctrl-Shift-↑, Ctrl-Shift-↓ Scroll file one line without moving caret.

Backspace Cut selection, or delete character to left of caret if
none.

Delete Cut selection, or delete character to right of caret
if none.

Home Place caret at top of document.

End Place caret at end of document.

Shift-End Delete word at current caret position.

Ctrl-End Delete line at caret.

Page Up, Page Down Scroll up or down one windowful.
100

SrcEdit
Keystroke equivalents in the Select menu

Keystroke equivalents in the Edit menu

Keystroke equivalents in the Misc menu

Ctrl-S Swap case of text under the selection.

Ctrl-F4 Indent selection.

Ctrl-X Cut selection to clipboard.

Ctrl-C Copy selection to clipboard.

Ctrl-V, Insert Paste from clipboard, replacing selection.

Ctrl-K Delete selection without affecting the clipboard.

Ctrl-A Select all.

Ctrl-Z, Escape, Shift-F6 Clear selection.

F1 Request language-specific help.

Ctrl-L Load file whose leafname is given by selection.

F4 Display Find dialogue box.

F5 Display Goto dialogue box.

F8 Undo last action.

F9 Redo last action.

Ctrl-F6 Format text block.

Ctrl-F8 Toggle between CR and LF versions of the file.

Ctrl-Shift-F1 Expand tabs.

Print Print the file.

Shift-F1 Toggle overwrite mode on or off.

Shift-F3 Toggle column tabs on or off.

Ctrl-F5 Toggle word wrap on or off.
101

Keystroke equivalents
Keystroke equivalents in the Find menu

Note: these keystroke definitions only come into play once the Find dialogue box
has been displayed (e.g. by typing F4).

Keystroke File options

↑, ↓ Find / replace text string.

F1 Display Text found dialogue box.

F2 Use previous find and replace strings.

F3 Count occurrences of find string.

F4 Toggle case sensitive switch.

F5 Toggle magic characters switch.

F6 Toggle wildcarded expressions switch.

F2 Open a dialogue box enabling you to load an existing
SrcEdit file into a new window.

Shift-F2 Open a dialogue box enabling you to insert an
existing SrcEdit file at the caret position. If any text is
selected, it will be replaced with the loaded file.

Ctrl-F2 Close window.

F3 Save the file in the current window. This is a
short-cut to the normal Save as dialogue box.

Shift-F9 Save modified files and close all windows.
102

6 General features

his chapter describes those features common to all the Desktop

non-interactive tools.

As described in the chapter Working with desktop tools on page 11, the Desktop
programming tools can be divided into two categories: interactive and
non-interactive. The non-interactive tools are those which you set options for and
then run, not interacting further until the task completes or is halted. An example
of a non-interactive tool is the linker Link, whereas the editor SrcEdit is an
interactive tool. The chapters following this each describe an individual
non-interactive Desktop tool. Further chapters in the accompanying language user
guides describe non-interactive tools specific to programming in particular
languages; for example, the language compilers and assemblers themselves.

The non-interactive tools can be further divided into two sub-categories: filters and
non-filters. The filter tools are those that take a set of input files and process them
to produce output files, examples being Link, Libfile, Squeeze and the language
processors. The non-filter tools all perform some immediate action, such as
examining text files and presenting you with information as text output. The filter
tools are intended to be used both managed and unmanaged by Make (an
interactive tool described earlier in this user guide), whereas the non-filter tools
are normally just used for unmanaged work.

To start unmanaged use of any of the non-interactive tools, you first double-click
Select on a tool application name in a directory display. This loads the tool, putting
its application icon on the icon bar (just like any other RISC OS application).

When using the filter type of non-interactive tool managed by Make, there is no
need to start each tool and put its icon on the icon bar.

All the non-interactive Desktop tools are implemented as command line programs
provided with RISC OS desktop interfaces by the FrontEnd relocatable module, but
you do not need to be aware of this when using them, as command lines are
automatically generated from your settings of the desktop interface of each tool,
making the tools appear to be standard RISC OS applications.

T

103

The Application menu
Interface

The interface of each non-interactive tool can be summarised as follows:

● Clicking Menu on the application icon brings up a standard application main
menu (for unmanaged use only).

● Clicking Select on the application icon displays the SetUp dialogue box. This
allows the user to set options and specify input files etc. A menu is available
within the dialogue box enabling other options to be set. Tool SetUp boxes are
displayed by Make for managed development.

● Messages generated are output to a Text window or a Summary window. You
can toggle between these windows and save the output to a file.

● A processed output file from a filter tool is either saved in a work directory or is
saved by you from a standard Save as dialogue box which appears when the
task has completed without error (unmanaged use only).

The Application menu

Clicking Menu on the application icon (for example, the Diff tool) gives the
following main menu:

Info returns information about the application.

Save options causes the options in the SetUp box, and all submenu options
(meta-options) from this main menu, to be saved in a file for later use as defaults
when the tool is restarted.

The Options submenu allows you to set the following options:
104

General features
Auto Run will cause the command-line command to be run immediately when
a file is dragged onto the icon on the icon bar, without first displaying the
SetUp dialogue box. Options remain as they are currently set.

Auto Save suppresses the Save as dialogue box of filter tools if a sensible
pathname is available to save the output to. For more details on pathnames
see the METAOPTIONS section on page 193. Note that ‘output’ here is used to
describe a single file which is produced by running the command-line tool.

The Display submenu allows the user to choose whether the tool outputs by
default into a text window or a summary window.

Help displays a help file in a scrollable text window, for example:

Quit quits the application.

The SetUp box

When working in the unmanaged way, i.e. with the tool application icon on the icon
bar, clicking Select on this icon or dragging the name of an input file (if Auto Run is
off) to this icon displays the SetUp dialogue box. If the SetUp box was displayed by
a filename drag, this filename is displayed in the relevant writable icon. Options
appear with the previous settings used, making it easy to repeat the last run of a
tool.

When working managed by Make, you specify a ‘recipe’ of tasks to be followed to
construct a program from its sources. This recipe is stored as a Makefile, and can
be used later. You specify the recipe in terms of what goes in (source files, libraries,
etc.), what comes out (e.g. an executable !RunImage file) and the processes
followed. The processes followed include specifying the options to be set for the
filter tools when they are used. To set these options you follow the Tool options
105

The SetUp box
menu item of Make to a list of tools, then Select on the name of the relevant tool.
This brings up the SetUp dialogue box of the relevant tool, whether its application
icon is on the icon bar or not. The SetUp box appears with options set to helpful
default states for managed use.

 A typical SetUp dialogue box is that of the application Diff:

The SetUp box for each application is different, but for unmanaged use they all
offer the following two action buttons:

Run runs the tool with the options as set, starting a multitasking task performing
the non-interactive job specified. This multitasking depends on the presence of the
TaskWindow relocatable module.

Clicking Select on Run removes the dialogue box, clicking Adjust on Run leaves the
dialogue box on your screen.

Cancel discards any changes made to the options and closes the SetUp box.

The SetUp menu

Clicking Menu on the SetUp dialogue box produces a menu with the style of:

Command line leads to a dialogue box showing the command line equivalent of
the options set in the SetUp dialogue box. It also shows any extra options set from
the Other options part of the menu.

Other options are a set of options specific to the particular application.
106

General features
For example:

Output

Two types of output window are available for generated messages; Text and
Summary.

The Text window

If Text has been chosen from the Display submenu then a scrollable, saveable text
window appears when the tool is running. All textual output sent to the screen by
the program appears in the text window. This window can be closed at any time,
thus aborting the command-line program. The Title bar of this window shows the
name of the tool and the state of the text running, i.e. Running, Completed,
Aborted or Paused. An example of a Text window using the application Diff is:

Clicking Menu on a text window displays the following menu:

other options
107

Output
Info gives information about the program being run.

Cmd Line shows the command line generated and used to run the tool.

Save allows the textual output to be saved in a file.

Abort aborts a running program.

Pause pauses a running program.

Continue continues a paused program.

The Summary window

If Summary has been chosen from the Display submenu then a small summary
window, similar to the following, appears when the tool is running:

This summary window displays the sprite of the application and the time at which
the command was run. The Title bar is the same as for the text window. There are
two action buttons, Abort and either Pause or Continue, which allow the program
to be aborted, paused, and continued in an identical fashion to the menu on the
Text window.

Clicking Menu on the summary dialogue box displays a menu similar to the
following:

Info gives information about the program being run.

Cmd Line shows the command line generated to be used to run the tool.

Save allows the textual output to be saved in a file.

Toggling between the Text and Summary windows

To toggle between the Text and Summary windows click Adjust on the output
window’s close icon.
108

General features
Processed file output from filter tools

The numbers and types of files output varies between each filter tool, so for more
details see the chapter on the tool in question.

During managed development the saving of processed files is specified by the
Makefile, which can be constructed for you by Make.

For unmanaged development, processed files are either saved in positions relative
to the work directory, or saved by you from a Save as dialogue box which appears
when a job has completed without errors. This box does not appear if you have
enabled the Auto save option on the application menu.
109

Output
110

Part 3 - Non-interactive tools
111

112

7 A8Time

8Time is an instruction timing simulator which can help assembly language

programmers by calculating the time required to execute sequences of ARM

instructions.

It is usually most productive to use a high level language to write software.
However, there are two key areas where assembly language is still the language of
choice: low-level hardware manipulation (which is confined to the operating
system) and high-performance data processing, where even the best compilers can
rarely match a human assembly author.

To write the fastest assembly code, you need to be aware of how many clock cycles
each instruction takes to execute and how different instructions interact with each
other. These details vary considerably from one CPU design to another.
Documentation is sometimes patchy or inaccurate, but a good place to look is
often the Technical Reference Manual published by ARM for the CPU that you are
targeting.

ARM CPUs have become more complex over time, and with recent designs it can
be hard to take account of all the rules that apply to a particular sequence of
instructions. A8Time assists you by simulating the instruction scheduler of, as the
name suggests, a Cortex-A8 CPU, and enabling you to identify the relative speed of
different instruction sequence candidates.

Background to pipelines and scheduling

All ARMs are pipelined. This means that processing of any one instruction is
broken down into stages, and adjacent instructions are overlapped such that when
one instruction is at one pipeline stage, the previous pipeline stage is processing
the next instruction.

The earliest ARMs were relatively simple and used three stages: instruction fetch,
instruction decode and instruction execute. (This is the origin of the PC register
being 8 bytes ahead by the time an instruction is executed.) Each individual
instruction's timing could be predicted in isolation – while the number of cycles
could vary depending upon whether its condition code passed or (for multiplies)
the data it was working on, the neighbouring instructions had no impact. For
multi-cycle instructions, the entire pipeline halted.

A

113

Background to pipelines and scheduling
Pipelines started getting longer with ARMv4 (StrongARM). This also introduced the
concept of delayed results, whereby the following instruction could start
progressing through the pipeline sooner if it did not depend upon the output
register(s) of earlier ones. Effectively the pipeline forks to enable unrelated
instructions to be processed at the same time – a simple form of what is known as
superscalar processing.

Where an instruction does depend upon the delayed result of an earlier instruction
(known as an interlock) and so cannot proceed, the pipeline is said to experience a
stall. The trick to optimising software at the instruction level can be summarised as
rearranging the instructions to minimise the number of stalls.

At ARMv5 (ARM9E-S and XScale) interlocks were further refined to take account of
the fact that the following instruction does not always need all of its input registers
at the same pipeline stage or therefore at the same clock cycle, so the number of
stalls could vary depending upon the nature of both the adjacent instructions.

ARMv7 introduced dual-issue pipelining. This means that two instructions can be
decoded and start executing during the same clock cycle. However, there are tight
restrictions on when this can occur, and these details vary from processor to
processor. These restrictions are called hazards, and in addition to the interlocks
present in earlier CPUs (which Cortex-A8 calls a “data source hazard”) it features
the following:

● Load/store resource hazard: only one load/store can be performed per cycle,
though it can be in either pipeline.

● Multiply resource hazard: multiplies cannot be issued to pipeline 1.

● Branch resource hazard: only one branch can be performed per cycle, though it
can be in either pipeline.

● Data output hazard: instructions with the same output register(s) cannot be
issued in the same cycle.

● Multi-cycle instruction hazard: if an instruction takes more than one cycle, it
cannot be issued to pipeline 1.

The additional challenge with Cortex-A8 is to identify when instructions can be
rearranged such that they can be dual-issued. As you can imagine, with all the
hazards to take account of, it is considerably more complex to calculate the cycle
counts of instructions on the Cortex-A8 than with earlier CPUs – hence the need for
the A8Time utility.

Many of ARM’s even more recent processors, including the Cortex-A9, A15 and
A17, feature out-of-order instruction issue. This effectively takes the burden of
instruction scheduling off the shoulders of the assembly author (or compiler).
114

A8Time
Using A8Time

A8Time takes as input a text file containing a list of ARM assembler instructions. To
make it easier to copy chunks of code from source files, it knows a limited amount
of ObjAsm syntax:

● It recognises ObjAsm’s RN directive so that you do not need to rename any
symbolic register names you may have used.

● Anything else left-aligned is assumed to be a label and is ignored.

It is important to note that A8Time is far from a full CPU simulation. It does not
know anything about what any of the instructions actually do, so you need to list
them in the order in which they would be encountered by the CPU, including by
following any branches yourself. It also makes no allowances for the varied
amounts of time it takes to access memory; all the timings it gives assume the data
is in the L1 cache.

You should also be aware that not every instruction is recognised by A8Time,
although the majority of common ones are.

The SetUp dialogue box

Clicking Select on the application icon or dragging the name of a file (if Auto Run
is off) from a directory display to the icon brings up the SetUp dialogue box:

The File writable icon allows you to specify the name of a file to be processed
(typed in or dragged from a directory display).

The SetUp menu

Clicking Menu on the SetUp dialogue box displays the following menu on the
screen:

For a description of the A8Time Command line options see the section Command
line interface on page 117.
115

The Application menu
The Application menu

Clicking Menu on the A8Time application icon gives the following options:

For a description of each option in the application menu see the chapter General
features on page 103.

Example output

The output of A8Time is a report showing the pipeline usage for the given
sequence of instructions. The output appears in one of the standard
non-interactive tool output windows. For more details of these see the section
Output on page 107.

The example below shows the output for the following sequence of instructions:

foo RN 0
bar RN 1
label

LDRB foo, [sp]
MUL bar, r2, r3
ADD bar, bar, foo, LSL #1
116

A8Time
If the LDRB and MUL instructions are switched, and A8Time is run again, you will
see that the code still does exactly the same thing, but does so faster.

Command line interface

For normal use you do not need to understand the syntax of the A8Time command
line, as it is automatically generated for you from the SetUp dialogue box settings.
The command line syntax for A8Time is:

A8Time input [output]

Options

input a valid pathname specifying an input assembler file

output a valid pathname specifying an output report file
117

Command line interface
118

8 ABC

BC is the Archimedes BASIC Compiler for programs written in BBC BASIC,

producing programs which run faster than the original interpreted code, and

are often smaller too. ABC works on all versions of RISC OS above 3.00 and with 26
and 32 bit processors.

Consult the separate manual in the Documents.Manuals directory for full
details of how to use ABC.

A

119

120

9 AMU

he Acorn Make Utility (AMU) is a tool managing the construction of executable

program images, libraries, and so on using operations specified in a Makefile.

AMU uses standard Makefile syntax which is largely compatible with Unix and GNU
Make. See appendix Makefile syntax on page 209 for details. Some details described
in the chapter Make on page 59 may also be useful references for AMU, as the
command line tool amu, which performs the management of program
construction, is the same tool used by Make.

Each time that AMU is run, a work directory is set up for that job as the directory
containing the Makefile. For the effect of the work directory on each tool, see the
chapters on individual tools such as the language processors CC and ObjAsm in
this and accompanying user guides.

AMU is one of the non-interactive desktop tools, its desktop user interface being
provided by the FrontEnd module. It shares many common features with the other
non-interactive tools. These common features are described in the chapter General
features on page 103.

Users of previous versions of AMU should note that the rules for macro priority
have changed in this version – see Macro priority on page 223 for details.

To simplify the construction of RISC OS programs, a set of Shared Makefiles are
provided in the AcornC/C++.Makefiles directory. All of the examples in
Sources.DDE-Examples that have Makefiles have been updated to build in
this manner, and provide useful examples of how to do this.

Starting AMU

Since AMU is an alternative tool providing construction management like Make, it
is normally used controlled directly from its desktop interface. To start AMU, first
double click on !AMU in a directory display to put its icon on the icon bar.

T

121

Starting AMU
Clicking Select on this icon or dragging the name of a make file (text or
Makefile file type) from a directory display to the icon brings up the AMU SetUp
dialogue box, from which you control the running of AMU:

Makefile contains the name of the Makefile to be used when AMU is run. If you
brought up the SetUp dialogue box by clicking on the AMU icon bar icon, this
writable icon contains the previous Makefile used (if any), otherwise it displays the
name of the file you dragged to the icon. Dragging another file to this writable icon
replaces its contents with the new name.

Targets contains a space-separated list of the names of the targets in the Makefile
to be constructed, and macro predefinitions of the type name=string. If this
writable icon is empty (default) the first target in the Makefile will be made.

The Continue after errors option causes the make job to continue after one of the
commands issued by it has returned a bad return code (signalling an error). When
the job continues, only those branches of the make job which don’t depend on the
failed command are executed.

The Ignore return codes option causes the make job to continue after one of the
commands issued by it has returned a bad return code (signalling an error). When
the job continues, all subsequent branches of the make job are executed, as if the
return code was good.

The Don’t execute option stops any commands being executed, instead just
printing them to the output window with dependency reasons for each one.

The Silent option stops printing of executed commands in the output window.

Clicking Menu on the SetUp dialogue box brings up the AMU SetUp menu,
containing a few additional options:
122

AMU
The Command line option on the above menu has the standard purpose for
non-interactive desktop tools as described in the chapter General features on
page 103.

The Stamp option stops construction of the target, instead causing sources and
target to be stamped with current time so that the target appears up to date. This
only works if all sources are present.

The Command file option leads a writable icon where you specify the name of a
file to be written containing commands generated. If you specify a relative
filename, this is used relative to the work directory (the location of the Makefile).
The commands are written to this file but not executed.

The Application menu

Clicking Menu on the AMU application icon on the icon bar gives access to the
following options:

For a description of each option in the application menu see the chapter General
features on page 103.

Example output

Running AMU displays any error messages in the standard text output window for
non-interactive tools. If all goes well this window contains no error messages, for
example:
123

Command line interface
Command line interface

For normal use you do not need to understand the syntax of the AMU command
line, as it is generated automatically for you from the SetUp dialogue box and
menu settings before it is used.

The syntax of the AMU command line is:

amu [options] [target1{ target2...}]

Options

-e Enables environment macro override – see Macro
priority on page 223 for details.

-f makefile Makefile name (defaults to Makefile if omitted)

-i Ignore return codes

-k Continue after errors

-n Don’t execute but do display the commands that
would have been executed even if the makefile
contains .SILENT and even if the command has a @
prefix.

-o
commandfile

Specify Command file as on SetUp menu

-s Silent

-t Equivalent to Stamp on the SetUp menu

-v Outputs each Makefile command after macro
expansion and before it is executed, even if the
Makefile contains .SILENT, the command starts
with @@ or the -s switch was used.

-xn Enable Makefile debugging. n is a bitfield, so-x1 sets
level 1, -x2 sets level 2, -x4 sets level 3, -x6 sets
levels 2 and 3. The level assignments are:

1: CLI processing, dependency tree creation &
command list assignments
2: Macro processing, pattern substitutions etc.
3: Unused
4: Command execution
5: Command expansion of patterns ($* $< $? etc.)
6: Makefile data structure internal debugging
7: Low-level internal debugging
124

AMU
target1 {target2} ...

This is a space-separated list of targets to be made or macro pre-definitions of the
form name=string. Targets are made in the order given. If no targets are given,
the first target found in Makefile is used.

-D Displays the reasons for executing commands and
executes the commands

-E Enables macro definition priority compatibility with
amu 5.00 (see Macro priority on page 223 for details).
125

Command line interface
126

10 DecAOF

ecAOF decodes one or more object files and returns information about each

area within the files.

The SetUp dialogue box

Clicking Select on the application icon or dragging the name of a file from a
directory display to the icon brings up the SetUp dialogue box:

The Files writable icon allows you to specify the name of one or more files to be
processed (typed in or dragged from a directory display). These files must be ARM
Object Format (AOF) files.

SetUp options

Only area declarations prints a short summary of details about each area in the
object file. If this option is selected no other details are printed.

The options offered under the heading of Print are all set on by default. Choosing
one or more of them will set the remaining options to off.

Symbol table prints the contents of the symbol table.

String table prints the contents of the string table.

Debug prints the debug areas in a readable format.

Area contents prints the area contents in hex.

D

127

The Application menu
Area declarations prints the area declarations.

Relocation directives prints linker relocation directives.

Disassemble prints disassembly of code areas. Branches (B and BL) within the
same code area are looked up in the symbol table and displayed with the relevant
symbol name.

Demangle C++ symbols removes C++ mangling from symbol names.

UAL syntax selects the ARM Unified Assembly Language syntax for disassembly.

The SetUp menu

Clicking Menu on the SetUp dialogue box displays the menu shown on the left.

For a description of the DecAOF Command line option see the section Command
line interface on page 129

The Application menu

Clicking Menu on the DecAOF application icon gives the following options:

For a description of each option in the application menu see the chapter General
features on page 103.

Note that Auto Save is not available for this application.
128

DecAOF
Example output

The output of DecAOF appears in one of the standard non-interactive tool output
windows. For more details of these see the section Output on page 107.

The following window shows an example of the output from DecAOF:

Command line interface

For normal use you do not need to understand the syntax of the DecAOF command
line, as it is automatically generated for you from the SetUp dialogue box settings.
The Command Line syntax for DecAOF is:

DecAOF [options] filename [filename...]

Options

-a print area contents in hex (implies -d)

-b print only the area declarations

-c print disassembly of code area (implies -d)

-c++ demangle C++ symbol names.

-d print area declarations

-g print debug areas

-r print relocation directives (implies -d)

-s print symbol table

-t print string table

-u disassemble to UAL syntax

filename a valid pathname specifying an AOF file
129

Command line interface
130

11 Diff

iff displays the textual differences between two files, or between files in two

directories, on a line-by-line basis. To compare files more usefully various

options allow you to display only those differences of specific interest.

The SetUp dialogue box

Clicking Select on the application icon or dragging the name of a file from a
directory display to the icon brings up the SetUp dialogue box:

Path 1 and Path 2 allow you to specify the names of files or directories to be
processed (typed in or dragged from a directory display).

SetUp options

Case insensitive instructs Diff to ignore the case of letters; for example,
Variable and variable would be considered as identical if this was chosen.

Expand tabs substitutes tabs by multiples of eight spaces.

Remove spaces removes all spaces before comparing lines. This is useful if you
wish to examine two files you have been editing but are not interested in any extra
spaces you may have introduced.

Squash spaces replaces all instances of two or more spaces by one space.

Note: If you are using Diff to display the differences between two source files where
spaces can be critical, e.g. assembler code, and you want to display lines where
spaces have been deleted or added, it is essential to ensure that neither Remove
spaces nor Squash spaces have been chosen.

D

131

The Application Menu
The SetUp menu

Clicking Menu on the SetUp dialogue box displays the menu shown on the left.

Command line enables you to examine or edit the actual command line. For more
information on this option see the section Command line interface on page 134.

Dir. structure displays only the directory structure of the two files. It does not
display any differences between the files.

Equate CR/LF instructs Diff to treat the linefeed and carriage return characters as
identical. This is especially helpful when analysing files created by different editors
where sometimes linefeeds and sometimes carriage returns are used as end of line
terminators.

Verbose tells Diff to print information about all the files being compared, even if
they are identical. Turning this option off causes it to only list actual differences.

Fast performs a speedy analysis of two files. It reports only whether there are
differences between the two files, not what or where the differences are.

Large files is helpful where very large files are being compared. It sometimes
happens that two files differ completely over a large section of text because, for
instance, you may have edited in several paragraphs or even several pages of text.
Ordinarily Diff would not be able to detect this and would report every line from
this point forward as different. However, if Large files has been chosen Diff
performs a more detailed analysis (thereby taking longer) and can detect this
situation. It will then pick up where the two files converge again and display only
valid differences from that point onward.

Squidge removes all spaces, except between alphanumerics, where multiple
spaces are replaced by one space.

Expand tabs allows you to replace tabs by multiples of any number of spaces you
wish.

The Application Menu

Clicking Menu on the Diff application icon gives the following options:
132

Diff
For a description of each option in the application menu see the chapter General
features on page 103.

Note that Auto Run and Auto Save are not available for this application.

Example output

The output of Diff appears in one of the standard non-interactive tool output
windows. For more details of these see the section Output on page 107.

The following two examples show the use of options within Diff.

Example 1

In this example two text files have been analysed by Diff with no options being set:

Three differences have been found:

● on line 6 of the first file Doncaster has been spelt with a lowercase d.

● on line 7 of the first file stopping has been spelt with only one p.

● on line 9 of the first file there is an extra space before bridge.

Example 2

In the this example the same two files are compared but the Case insensitive and
Remove spaces options have been chosen.
133

Command line interface
The result is that only the different spelling of the word stopping has been
displayed.

Command line interface

For normal use you do not need to understand the syntax of the Diff command
line, as it is automatically generated for you from the SetUp dialogue box settings.
The Command Line syntax for Diff is:

Diff [options] filename1 filename2

Options

-d Show only the directory structure, do not display any
differences

-e Equate CR and LF

-f Perform a fast Diff, all options except -d ignored, do
not display any differences

-l Handle large files more effectively (but more slowly)

-n Ignore case sensitivity when comparing letters

-r Remove all spaces before comparing lines

-s Squash sequences of spaces to one space

-t As for -r, but -s when between two alphanumeric
characters

-v Be verbose, reporting even identical files.

-x Expand tabs to spaces (tab stops at multiples of 8)

-Xn Expand tabs to spaces (tab stops at multiples of n)

filename1
filename2

valid pathnames specifying objects to be ‘diffed’
134

12 Find

ind searches both the names and the contents of one or more files for text

patterns. It includes options allowing you:

● to control whether the case of letters should be considered;

● to use wildcard expressions to specify several filenames;

● to insert wildcard expressions in the pattern string so that digits, control
characters, alphanumerics and particular sets of characters can be searched
for;

● to start SrcEdit displaying found text using Throwback.

The SetUp dialogue box

Clicking Select on the application icon or dragging the name of a file from a
directory display to the icon brings up the SetUp dialogue box:

The Patterns writable icon allows you to type in the patterns to be searched for.

If a single pattern includes spaces, the pattern must be enclosed in double quotes,
for example:

"the text"

Double quote characters in a search pattern must be preceded by a backslash.

The Files writable icon allows you to specify the name of one or more files (typed
in or dragged from a directory display) to do the searching in.

F

135

The SetUp dialogue box
SetUp options

Line count only prints only a count of the number of lines matching the pattern
from the specified files.

Filenames only lists only the names of files matching the pattern.

Case insensitive will ignore the case of letters; for example, normal and Normal
would be considered as identical if this option was chosen.

Verbose lists the name of each file before searching it for pattern matches.

Throwback enables SrcEdit throwback when text selections are found.

Clicking on Wildcards displays a further set of options:
136

Find
Pattern wildcards

The options listed under Pattern Wildcards allow you to specify wildcarded
expressions in your search string. Clicking on one of these options will insert a
special character into the Patterns writable icon immediately before the caret.

Wildcard Meaning

Any . Matches any single character. For example:

Fr.d will match Fred and Fr1d, but not Fried

Newline $ Matches the newline character (LineFeed).

Alphanum @ Matches any alphanumeric character a-z, A-z, 0-9 or _.

Digit # Matches any digit 0-9.

Ctrl | Matches Ctrl-c, where c is any character between @ and _.
For example:

|x matches Ctrl-x

Note: There are two special cases:

|? matches the Delete character

|!c matches Ctrl-c’ where c’ is the character c
with its top bit set

Normal \ Matches the following character even if that character is a
special character. For example:

\. matches the dot character (not any single
character)

\c matches lowercase c

Set [Inserts a left square bracket immediately before the caret.

] Set Inserts a right square bracket immediately before the caret.

The preceding two options insert opening and closing
square brackets into the Patterns writable icon. You can
then manually insert one or more characters between these
brackets and Find will match any one of the characters you
put inside the brackets. For example:

t[aei]n matches tan, ten and tin, but not ton

Note that a set is always case-sensitive.

Not ~ Matches any character other than the following character,
where the following character is any of the simple character
patterns listed above. For example:

la~ne matches late, lace and lake, but not
lane
137

The SetUp dialogue box
File wildcards

The options offered under File Wildcards insert special characters into the Files
writable icon which allow you to specify files in a variety of ways. Several of these
options require you to manually insert additional text next to or inside these
special characters:

Filename ch. # inserts a hash character immediately before the caret. This
character will match any single filename character except ‘.’

For example:

Find adfs::HDisc4.$.Fred# will search files Fred1 and Freda, but not
Fred13, Frederick etc.

Find adfs::HDisc4.$.Fr#d will search files Fred and Fr2d, but not
Fre1d, Freed etc.

0 or more filename chs. * inserts an asterisk immediately before the caret. This
character will match any sequence of filename characters except ., {, and }.

For example:

Find adfs::HDisc4.$.Fred* will search files Fred1 and Freda, and also
Fred13, Frederick etc.

Find adfs::HDisc4.$.Fr*d will search files Fred and Fr2d, and also
Frd, Freed, Fr123d etc.

Sub-directories ... inserts three dots immediately before the caret. It must be
positioned immediately after a directory name. Find will then search all nominated
files in that directory and in any subdirectories in that structure.

For example:

Find adfs::Amy.$.Receipts...monthly

will search all files called monthly in the directory Receipts and also in any
subdirectories of Receipts.

0 or more * Matches 0 or more occurrences of the following character,
where the following character is any of the simple character
patterns listed above. For example:

ca*n matches can, cannot and cat

1 or more ^ Matches 1 or more occurrences of the following character,
where the following character is any of the simple character
patterns listed above. For example:

ca^n matches can and cannot, but not cat

Wildcard Meaning
138

Find
Or { inserts a left brace immediately before the caret.

Or } inserts a right brace immediately before the caret.

The preceding two options insert opening and closing braces into the Files
writable icon. You can then manually insert one or more filename characters
between these braces, separating each filename with a comma. Find will then
search all filenames inside the braces.

For example:

Find adfs::HDisc4.$.W.rel.{atype,btype,ctype}

would search all three files inside the braces, i.e. atype, btype and ctype.

0 or More (inserts a left bracket immediately before the caret.

) 0 or More inserts a right bracket immediately before the caret.

The preceding two options insert opening and closing brackets into the Files
writable icon. You can then manually insert one or more filename characters
between these brackets and Find will search any files with none, one or more
occurrences of the characters you put inside the brackets.

For example:

Find adfs::HDisc4.$.Fr(e)d will search files Frd, Fred and Freed,
but not Frid.

Find adfs::HDisc4.$.Fr(ie)d will search files Frd, Fried and
Frieied, but not Frid, Frieed or
Fred.

The SetUp menu

Clicking Menu on the SetUp dialogue box displays the menu shown on the left.

Command line option – see Command line interface on page 141.

The Allow ‘–’ option enables you to specify another pattern which will be matched
even if it begins with a –. This pattern will be searched for in conjunction with the
patterns you have inserted into the Patterns writable icon.

If you need to match two or more patterns beginning with a –, then you must
precede each additional pattern with -e

For example:

-pattern -e -pattern -e -pattern

Grep style enables you to specify patterns using the syntax of the UNIX grep tool.
This option is provided for users familiar with UNIX.
139

The Application menu
The Application menu

Clicking Menu on the Find application icon gives the following options:

For a description of each option in the application menu see the chapter General
features on page 103.

Note that Auto Run and Auto Save are not available for this application.

Example output

The output of Find appears in one of the standard non-interactive tool output
windows. For more details of these see the section Output on page 107.

The following window shows an example of the output from Find:

In the above example the pattern MOV[CV] was specified in the Patterns writable
icon in order to list only those instructions beginning with MOVV or MOVC in an
assembler source file. Instructions where the fourth letter was not a C or V, such as
MOVS, MOVNE and MOVEQS, were, therefore, not listed. The Throwback option was
not enabled in the above example. With Throwback enabled, a SrcEdit Throwback
browser would also have appeared allowing the file Util to be edited, starting at
the found lines.
140

Find
Command line interface

For normal use you do not need to understand the syntax of the Find command
line, as it is automatically generated for you from the SetUp dialogue box settings.
The Command Line syntax for Find is:

Find [options] [pattern{ pattern}] -f filepattern{ filepattern}

Options

-c list only a count of the number of lines matching from each file.
-n ignore the case of letters when making comparisons.
-l list only the names of files matching patterns.
-v list the name of each file before searching it for matches.
-u accept UNIX grep/egrep-style patterns.
-e allow the following pattern arguments to begin with a –.

Pattern

. matches any single character.
$ matches the newline character (LineFeed).
@ matches any alphanumeric character.
matches any digit.
| |c matches Ctrl-c, where c is any character between @ and _.
\ matches the following character even if that character is a special character.
[] matches any character inside the square brackets.
~ matches any character other than the following character.
* matches 0 or more occurrences of the following character.
^ matches 1 or more occurrences of the following character.

-f marks the end of multiple patterns and the start of filepatterns.

Filepattern

matches any filename character except .
* matches 0 or more filename characters other than .
... searches files in that directory and any subdirectories in that directory.
{,} searches files contained within braces (filenames separated by commas).
() search any file with none, one or more occurrences of the characters inside

the brackets.
141

Command line interface
142

13 LibFile

ibFile creates and maintains library archives. It can be used to create archives

of files for backup and distribution purposes, for example. A special form of

library archive containing AOF files can be created for use with Link. The format of
library archive files is described in appendix Code file formats on page 247.

The SetUp dialogue box

Click Select on the application icon. This displays the SetUp dialogue box:

The SetUp options

Library is the name of the library to be processed. If a library is being created this
will be shaded. A Save as dialogue box will be presented when the library is
created.

File List, when used with Create or Insert, contains the list of files to be placed in
the library. When used with Delete or Extract it contains a list of files in the library
which are to be extracted or deleted. You can use wildcard characters in the File
List (* to match zero or more characters, and # to match a single character).

Create creates a new library containing the files in File List. This is the default
option.

Delete removes the files in File List from the specified library.

Insert adds the files in File List to the specified library. Files of the same name in
the library will be replaced.

L

143

The SetUp dialogue box
Extract copies the files in File List from the specified library to disc. The files are
not deleted from the library.

List library lists the files contained in the specified library. By default, this option
is off.

The SetUp menu

Click Menu on the SetUp dialogue box. This displays the LibFile SetUp menu.

Command line allows you to specify the command line to be presented to the
underlying LibFile command line tool. You should take care when modifying the
command line. The effect of certain arguments depends on the order in which they
appear in the command line. Changing this order may have unanticipated effects.
Refer to the section Command line interface on page 147.

Symbol table adds an external symbol table, as used by Link, to the library.
External symbols in any object files in the library are placed in the symbol table.
Non object files are ignored. By default, this option is on.

List symbol table lists the symbols in the external symbol table along with the
name of the AOF file which generated each symbol. This option is off by default.

Via file allows you to set up a list of files to be used in one file called a Via file.
When creating or maintaining libraries with a large number of files it may become
tedious having to drag all the files to the File List every time, especially if they are
in different directories. Enter the name of the Via file in the submenu and press
Return.
144

LibFile
Output

The Output window displays the list of files in the library and/or the list of external
symbols when the List library or List symbol table options are selected. The
following windows show examples of each.

Notes:

1 Any directories in the File List to be archived will be recursively archived (i.e.
all files in the specified directory will be archived and any directories in the
specified directory will themselves be recursively archived). This can be useful
if, for example, you are backing up an entire source tree on which you are
currently working.

2 When extracting files, LibFile places absolute filenames from the libraries
index in their corresponding absolute filenames on disc. Relative filenames
(i.e. those not containing a colon (:) a dollar ($) or an at sign (@)) are placed in
a temporary directory and, when the extraction is finished, a Save as dialogue
box is presented. This allows you to drag the extracted files to a suitable place
on your disc. The temporary directory is then renamed to the correct place on
your disc, or copied and subsequently deleted if you drag to a different device
or filing system.
145

Output
3 When creating libraries for distribution purposes, you should not use absolute
filenames in the File List. If, for example, you created a library with a File List
of adfs::Edward.$.PDUtils, it would not be very useful to someone
called Ian or to someone using a network filing system. Instead, set your
current directory (from the command line with the *Dir command) to
adfs::Edward.$ and use the File List PDUtils.

4 When creating libraries for backup purposes, you can use absolute filenames,
since you will always be restoring to your own disc. You should not, however,
mix absolute and relative filenames in the same library. LibFile will handle this
as described in the note on extracting files above, but the behaviour may be
confusing to anyone trying to extract files.

5 When creating a library, LibFile builds the library in memory. This means that
you cannot create a library bigger than the available memory on your machine.
When altering an existing library (using Insert or Delete) Libfile requires
memory space for the new and old libraries. If there is not enough memory for
this you can get around the problem by extracting all the files and recreating
the library including the files to be inserted, or omitting the files to be deleted.

6 When the Symbol table option is selected, LibFile always updates the external
symbol table regardless of the operation being performed. This is correct for
Create, Insert and Delete. For Extract this is usually not very useful, so you
should generally ensure the Symbol table option is deselected when using
Extract.

7 If the Symbol table option is not selected, LibFile deletes the external symbol
table when used with Insert or Delete. This prevents a potential problem
whereby the external symbol table could become out of date with respect to
the object modules in the library.

8 Convergence testing is a testing method whereby a binary file (such as an
object library) is rebuilt using itself, and the new and old binaries are
compared to ensure that they are the same. This can be difficult with tools
(such as LibFile) which timestamp files placed in the library, because the new
and old libraries will be built at different times, and will always differ.

LibFile provides the Null timestamps option to circumvent this problem. The
Null timestamps option uses timestamps of all bits 0, which corresponds to a
date of 00:00:00 01-Jan-1900. Thus, libraries built at different times can
be compared using a binary comparison utility, without the timestamps
causing extraneous differences to appear.

9 Wildcard matching, when applied to library members (when using Extract or
Delete) applies the wildcard across the complete filename. When applied to
files (Create or Insert) wildcards apply to single components of the filename.
Thus, the wildcard specification a#c would match a.b and abc when using
Extract or Delete, but would only match abc when using Create or Insert.
146

LibFile
Command line interface

For normal use you do not need to understand the syntax of the LibFile command
line, as it is automatically generated for you from the SetUp dialogue box settings.

The format of the LibFile command is:

Libfile options library [file_list]

Wildcards * and # may be used in file_list.

Options

Notes:

1 Multiple options may be specified in a single options argument. For example,
-clso is equivalent to -c -l -s -o.

2 Most of the above options should be familiar from the description of the
desktop interface. One possible exception to this is the -q option. This option
means ‘behave as though the directory specified after the -q option were the
current working directory (as set by the dir command)’.

When extracting files with relative pathnames, LibFile creates this directory if
it does not already exist and prefixes the relative pathnames with the specified
directory. Note, that you should not add a full stop (.) to the end of the
directory specification, LibFile adds this itself.

3 The -q option is used by the desktop interface (since the desktop has no
notion of a current working directory) to tell LibFile where to put files with
relative pathname (generally <Wimp$ScrapDir>Tmp_name where
Tmp_name is a name invented by the desktop interface). This directory is then
renamed, or copied to a user-specified directory.

-h Display a screen of help text

-c Create a new library containing files in file_list

-i Insert files in file_list, replace existing members

-d Delete the members in file_list

-e Extract members in file_list placing in files of the same name

-o Add an external symbol table to an object library

-l List library, may be specified with any other option

-s List symbol table, may be specified with any other option

-t Use Null timestamps when creating or updating library

-v file Take additional arguments from file

-q dir Place relative filenames in dir when extracting file
147

Command line interface
4 For compatibility with previous versions of LibFile, specifying -c with -o with
a null file list does not create an empty library. Instead, it ignores the -c
option and adds a symbol table to an existing library.

Examples

LibFile -c srclib *

Create a library called srclib in the current directory from all the files in the
current directory (including the files contained in any directories in the current
directory).

LibFile -co adfs::Edward.$.clib.o.AnsiLib o

Create the object library AnsiLib from the object files contained in directory o in
the current directory.

Libfile -e -q :Ian.$.PDUtils :0.PDLib *

Extract all the files from :0.PDLib and put them in the directory
:Ian.$.PDUtils.

Assembler example

The programming example PrintLib, which you can find in
Sources.DDE-Examples.ObjAsm.PrintLib, consists of three potentially
useful procedures written in assembler which are intended to be assembled to
object files using ObjAsm and then formed into a library with LibFile. They
illustrate various programming points as well as how to construct a library.

If you examine the assembler source files in PrintLib.s you will see that the
procedure exported by each file obeys the ARM Procedure Call Standard. This
ensures that they, and hence the PrintLib library, can be linked with other
languages such as C. It is essential that procedures placed in a library have
consistent register conventions, so that they can be re-used later without
consulting their source text.

The PrintLib example is provided with both its assembly language source and the
finished library. The facilities provided by this library are used in other
programming examples. The procedures it exports are:

print_string Print a null terminated string pointed to by r0.

print_hex Print in hexadecimal an integer contained in r0.

print_double Print in scientific format a double precision floating point
number contained in r0,r1.
148

LibFile
To reconstruct PrintLib from its sources, first double click on !ObjAsm and !LibFile
in a directory display to load them as applications with icons on the icon bar. Then
assemble s.PrintStr, s.PrintHex and s.PrintDble to corresponding
object files by dragging each source file to the ObjAsm icon and saving the output
object files in the default places, i.e. o.PrintStr, o.PrintHex and
o.PrintDble.

Next drag o.PrintStr to the LibFile icon to make the LibFile SetUp dialogue box
appear:

Ensure that the Create option is chosen as above. Drag the other two object files
to File List, then click on Run. Finally save the library file produced: it is now ready
to use.

The assembly language source file PrintLib.s.ATestPrLib is an example
program making use of the procedures exported by PrintLib. To use it:

1 Double click on the !Link application to load it.

2 Assemble s.ATestPrLib to o.ATestPrLib with ObjAsm.

3 Link o.ATestPrLib with the finished PrintLib library to produce an
executable AIF image file.

Running the test program by double clicking on it should result in text output into
a RISC OS output window:
149

150

14 Link

he purpose of Link is to combine the contents of one or more object files (the

output of a compiler or Assembler) with selected parts of one or more library

files to produce an executable program.

Load the Link application by double-clicking on the !Link icon.

The SetUp dialogue box

Click Select on the application icon. This displays the SetUp dialogue box:

This allows you to set the following options:

The Files writable icon allows you to enter the list of object and library files to be
linked. You can do this in two ways:

● Type in a space-separated list of the files to be linked. You can use wildcards (*
to match zero or more characters, and # to match a single character).

● Drag the icons of the files to be linked onto the Files writable icon. Dragging a
directory to the icon (e.g. an o directory) links all the files in that directory.

Note: When linking libraries, you must take care to link them in the correct order.
See the section Libraries on page 155.

AIF generates ARM Image Format (AIF) output. This is the default image used for
building an application. You should only choose other image types if AIF is not
suitable for some reason. The format of AIF files is described in Appendix E.

Module generates Relocatable Module Format (RMF) output. Refer to Relocatable
modules on page 160 for more details.

T

151

The SetUp dialogue box
Relocatable AIF links an image so that it can be run at any address, usually
specified in conjunction with the Workspace option on the SetUp menu. See the
section Relocatable AIF images on page 159 for more details.

Binary generates a plain binary image (without an image header or any specific
image format). The default load address for a binary image is 0. Any other address
can be specified using the Base option from Link’s SetUp menu. If AIF is also
enabled in Link’s SetUp dialogue box, then a plain binary image is generated,
preceded by an AIF header which describes it.

Utility generates transient utility output. Refer to Transient utilities on page 161 for
more details.

AOF generates partially linked output in ARM Object Format, suitable for inclusion
in a subsequent link step.

Debug allows you to debug a program with the desktop debugger DDT. See the
chapter Desktop debugging tool on page 19 for more details on preparing a program
for use with the debugger. This option is not suitable for use with the module
option. This option is switched off by default.

Verbose gives progress reports in the Output window while linking. See the
section Output on page 154 for an example of this output. This option is switched
off by default.

The SetUp menu

Clicking Menu on the SetUp dialogue box displays the menu shown on the left.

Command line allows you to specify the command line to be presented to the
underlying Link command line tool. Refer to the section Command line interface on
page 162 for more details.

Link map displays the base address and size of every code, data and debugging
information area, and displays total sizes for the code, data and debugging
information in the output window. See the section Link map option on page 158 for
more information. For details on linker areas, see the section AOF on page 249.

X-Ref displays a list of inter-area references. This option is most useful when trying
to reduce dependencies between library elements, so that you only need include
the minimum set of library elements. It is also useful when using overlays. See the
section X-Ref option on page 158 for more details.

Errors to file allows you to specify the name of a file to which all errors should be
written.

Map to file will write a link map to the given filename (if the Link map option is
enabled).
152

Link
Symbols to file will write all symbols found to a file with the given name.

Overlay generates an overlaid image using the specified overlay description file.
For details of overlay description files, see the section Overlay description files on
page 157. This option is not suitable for use when generating Module or Binary
output.

Workspace, when used in conjunction with the Relocatable AIF option, generates
an auto-relocatable image which will relocate itself to the top of its application
space. This leaves the specified amount of workspace above the image free for the
use of the program being linked. The effect of this option is not currently defined
when generating image types other than relocatable AIF.

Entry specifies the entry point of an image if none of the object files themselves
specify an entry point. Generally, you should only use it when writing completely in
assembler without using the assembler’s ENTRY directive.

Base specifies the base address at which the image should be linked. By default
this is 0x8000 for AIF images and 0 for binary images. You should always load
non-relocatable AIF images at their base address.

No case causes a case insensitive comparison to be used when comparing
symbols. You will not generally want to use this option with C (which is case
sensitive). However, you may need to use it with other language systems (such as
Pascal and Fortran) which are case insensitive, especially if you are trying to
interwork with C and one of these languages.

Via file allows you to set up a list of object files to be linked in one file called a Via
file. Instead of having to drag all the files to the Files list on the SetUp dialogue
box, just enter the name of the Via file in the submenu.

Map unresolved refs causes all unresolved references to be resolved to a given
symbol.

C++ naming will report C++ symbol names using C++ notation.
Note that you must enable this option when linking C++ compiled code.

Others allows you to specify other options allowed by the underlying command
line link tool.

Note: The Base, Workspace and Entry options require a numeric argument to be
entered in the associated submenu. You can prefix this argument by & or 0x to
specify a hexadecimal value. You can postfix it by k for 210 and m for 220.
153

Output
Output

The Output window displays information printed when you have selected the
Verbose, Link map or X-Ref options. It also displays any error messages
generated while linking.

The following windows show examples of the Verbose and Link map output. You
will find an example of the X-Ref output in the section X-Ref option on page 158.

Verbose output:

Link map output:
154

Link
Possible errors during a link stage

Two common errors which can occur during a link stage are caused by unresolved
and multiple references.

In the case of unresolved references, a symbol has been referenced from an object
file, but there is no corresponding definition for the symbol. Link will generate an
error message giving the name of the undefined symbol. This is usually caused by
the omission of a required object or library file from the file list, or the misspelling
of an external identifier in the original source program.

Multiple references are caused by a clash of names. For example, a procedure
might have been defined with the same name as a library procedure, or as a
procedure in another object file.

Libraries

Libraries differ from object files in the way Link uses them. First, all the object files
are linked together. Then, for each library in turn, Link searches for symbol
definitions which match unsatisfied symbol references. When such a symbol
definition is found, the module defining that symbol is loaded.

When a library module is loaded, new unsatisfied symbol references may be
created, so the library is re-searched until no more members are loaded from it.
Note that each library is processed in turn, so references between libraries must be
ordered.

A reference from a member of a library later in the file list to a member earlier in
the file list will not be resolved. Therefore you must drag libraries to the file list in
the correct order.

Usually, at least one library file will be specified in the list of files to be linked. This
will typically be the run-time library for the language you are using. When writing in
C, you can use either the shared library (in which case you will need to link with the
shared library stubs, C:o.stubs) or the unshared library, C:o.ansilib. Use the
unshared library when linking a program for use with the desktop debugger, or
when linking a program which you intend to distribute to people who may not have
the shared C library.

You can call the procedures in the library for one language from programs written
in another, provided:

● both libraries conform to the ARM Procedure Call Standard (APCS) described
in appendix ARM procedure call standard on page 297

● the library’s initialisation routines have been called.
155

Generating overlaid programs
Refer to the chapter The Shared C library in the RISC OS Programmer’s Reference Manual
for details on how to initialise the common run-time kernel distributed with the C
library.

Generating overlaid programs

An introduction to overlays is given in the Acorn C/C++ manual. If you are not
familiar with the concept of overlays, you should read the chapter on overlays in
that manual first. This section only describes how to use Link to create an overlaid
application.

A simple, 2-dimensional, static overlay scheme is supported. There is one root
segment, and as many memory partitions as you specify (called 1_N, 2_N, etc.).
Within each partition, some number of overlay segments (called 1_1, 1_2, etc.)
share the same area of memory. You specify the contents of each overlay segment
and Link calculates the size of each partition, allowing sufficient space for the
largest segment in it. All addresses are calculated at link time: overlaid programs
are not relocatable.

A hypothetical example of the memory map for an overlaid program might be:

Segments 1_1, 1_2, 1_3 and 1_4 share the same area of application workspace.
Only one of these segments can be in memory at any given instant; the remainder
must be on disc.

Similarly segments 2_1, 2_2 and 2_3 share the 2_N area of memory, which is
entirely separate from the 1_N partition.

Link assigns AOF AREAs to overlay segments under user control. Usually, a
compiler produces one code AREA and one data AREA for each source file (called
C$$code and C$$data when generated by the C compiler). The C compiler
option -zo (described in the Acorn C/C++ manual) allows each separate function
to be compiled into a separate code AREA. This gives finer control of the

2_1 2_2 2_3

1_41_31_21_1

root segment

high

low

2_N

1_N

address

address
156

Link
assignment of functions to overlay segments (but at the cost of slightly enlarged
code and enlarged object files). You control the overlay structure by describing the
assignment of certain AREAs to overlay segments.

For all remaining code AREAs, Link will act as follows:

If all references to the AREA are from the same overlay segment, the AREA is
included in that segment; otherwise, the AREA is included in the root segment.

This strategy can never make an overlaid program use more memory than if Link
put all remaining AREAs in the root segment, but it can sometimes reduce it.

By default, only code AREAs are included in overlay segments. Data AREAs can be
forcibly included, but it is the user’s responsibility to ensure that doing so is
meaningful and safe.

On disc, an overlaid program is organised as a RISC OS application. The
components of the application (the !RunImage and the various overlay segments)
must reside in the application directory. Link creates the following components in
the application directory:

!RunImage The root segment, an AIF image (which may be squeezed).

1_1 Overlay segments, which are plain binary images, linked at
1_2 absolute addresses. Overlay segments may not be squeezed.
...

2_1
...

Overlay description files

The overlay description file, specified in the overlay submenu, describes the
required overlay structure. It is a sequence of logical lines:

● A backslash (\) immediately before the end of a physical line continues the
logical line on the next physical line.

● Any text from a semicolon (;) to the end of the logical line inclusive is a
comment (for documentation purposes) which is ignored by Link.

Each logical line has the following structure:

segment_name module_name [(list_of_AREA_names)] module_name ...

For example:

1_1 edit1 edit2 editdata(C$$code,C$$data) sort

The list_of_AREA_names is a comma-separated list of names as they appear
when displayed by the DecAOF tool. If omitted, all code AREAs are included.
157

Generating overlaid programs
A module_name is either the name of an object file (with all leading pathname
segments removed) or the name of a library member (again, with all leading
pathname segments removed).

X-Ref option

To help the user-partition between overlay segments, Link can generate a list of
inter-AREA references. To do this, choose the X-Ref option on the SetUp menu.
The following window shows an example of the output from X-Ref:

In general, if area A references area B (for example because x in area A calls y in
area B) then A and B should not share the same area of memory. Otherwise, every
time x calls y or y returns to x, there will be an overlay swap.

Link map option

The Link map option displays the base address and size of every area in the output
program. It is useful for determining how AREAs might be packed most efficiently
into overlay segments.

Linking with the overlay manager

The overlay manager is responsible for loading overlay segments when:

● an inter-segment reference occurs to a segment which is not loaded, or

● a procedure return occurs to a segment which is no longer loaded.

In general, referencing a datum cannot cause an overlay segment to be loaded.
One exception to this is an indirect procedure call via a function pointer which will
cause an overlay segment to be loaded (Link cannot distinguish this from a normal
procedure call, since Link just sees a word relocation to an overlaid procedure).
Note that the pointer itself must not be overlaid.
158

Link
If Link detects a data reference to a non co-resident or potentially non co-resident
segment it will issue one of the following messages:

Non co-resident data reference in module_name(area_name)

Possible non co-resident data reference in
module_name(area_name)

Certain types of data reference cannot be detected by Link. This happens when
read-only data is placed in a code segment. The C compiler places string literals in
code areas. This will cause problems if you have external string literals, since Link
cannot distinguish between a string literal and a procedure in the code segment.
Hence it indirects the string through the Procedure Call Indirection Table (PCIT).
So, when your program reads the contents of the string, it will in fact end up
reading the contents of the PCIT.

The C compiler option -fw (described in the Acorn C/C++ manual) causes the
compiler to place string literals in data areas. You should use this option on
modules which may contain external string literals.

The overlay manager must be included in the link stage. You will find the overlay
manager in the object file C:o.overmgr. You should drag this object file to the
Files icon when linking an overlaid program.

Note: The overlay manager is also contained in the non-shared library ANSILib, so,
if you are using ANSILib, you do not need to drag the overlay manager to the Files
icon. The shared C library does not contain a copy of the overlay manager.

Relocatable AIF images

Usually, when an image file is produced, it will execute correctly only at the
specified base address (or the default of 0x8000 if a base is not specified). This is
because the program will contain references to absolute addresses within itself.
However if you tell Link to generate a relocatable AIF image, you can load and
execute the program at any address. Link also inserts a branch in the image header,
so that the relocation code is automatically called when you run the program.

This is achieved by adding the following to the end of the image:

● a relocation table

● a small routine to perform the relocation.

The relocation table is a list of offsets from the start of the program to words which
need relocating. These words are adjusted by the difference between the base
address of the program and the address where it was loaded. Once the relocation
has been performed, the program proper starts executing.
159

Relocatable modules
However, although this can be used to make a program statically relocatable, it
does not confer true position-independence on the program. That is, the program
cannot be moved in memory once it has started, and still be expected to work.

If a Workspace value is specified on the SetUp menu, Link inserts the value in the
image header. The relocation code examines this value and, if the value is
non-zero, relocates the application to the top of application space, leaving the
specified amount of workspace between the end of the application and the top of
application space for stack and heap usage.

Relocatable modules

When linking a relocatable module, Link performs a similar task as when linking a
relocatable AIF image, adding a relocation table and a relocation routine to the
end of the module image.

However, the mechanism by which the relocation routine is called is different in a
relocatable module: A module must be multiply relocatable, since it may move
about in the Relocatable Module Area (RMA) when, for example, the RMA is tidied
with the *RMTidy command. The module must call the relocation routine in its
initialisation (or re-initialisation) code.

When using the C Module Header Generator (CMHG) tool you need not worry
about this, since CMHG automatically generates a module header which includes
a call to the relocation routine in its initialisation code.

If you are constructing the module header in assembler, you must make this call
yourself. Use the IMPORT directive to import the external symbol __RelocCode
and place a BL to this symbol in your initialisation code.

IMPORT |__RelocCode|
init

...
BL |__RelocCode|
...

__RelocCode only goes in the executable if it is a module and it explicitly
imports it (so assembler modules can be linked with link -rmf and not get this
function appended unless they actually need it).

Note: any code executed before the call to the relocation routine must be
position-independent.

When creating a module header in assembler, the AREA containing the header
should have the attributes CODE and READONLY. The AREA name should be
chosen so that the AREA will be the first AREA in the module. Link sorts AREAs
160

Link
first by attribute, then by AREA name, so you should choose an AREA name which
is lexicographically less than all other AREA names in your module. The CMHG
tool uses an AREA name of !!!Module$$Header, but this is not obligatory.

Unlike earlier versions, the linker now supports initialised static data in modules.
Consequently, modules written in C++ will now have their global constructors
called, but note that it is necessary to call ______main() if the module does not
have a main() function.

Transient utilities

Utility or transient programs (filetype FFC) can be linked with link -util. The
binary output features a header, with similarities to an AIF header, as required by
some versions of RISC OS. It also inserts relocation code if the symbol
__RelocCode is referenced (required to support any C source files that uses code
or static data pointers), in the same way as described above for relocatable
modules. After the relocation code, a small footer used to deactivate 26-bit
emulation (if Aemulor is installed) is inserted, provided all object files were
compiled/assembled using APCS-32. The read-only and read-write fields in the
header are initialised, with the header itself assigned to the former and the
relocation code and footer (if present) assigned to the latter.

The -nozeroinit flag is implicit if -util is used, since the RMA block into
which a utility is loaded will not be large enough for runtime initialisation of a
zero-init area, and there is no space in the header to specify this size anyway.

Notes: The C library cannot be used when linking a utility. Utility programs must
not be squeezed. For more details on utilities, refer to the RISC OS Programmer’s
Reference Manual.

Predefined linker symbols

All symbols containing the substring $$ are reserved by Acorn for use by Link.

For each AREA in the output file formed by coalescing one or more areas of the
same name (e.g. C$$code) Link generates two symbols:

area_name$$Base Address of the start of the area.

area_name$$Limit Address of the byte beyond the end of the area.

area_name The name of the area in the output file. You can use
these symbols in your programs to refer to the Base
and Limit of areas in your programs.
161

Command line interface
In addition, Link creates four conceptual areas in the output, and defines Base and
Limit symbols for them.

Although it will often be the case, there is no guarantee that the end of the
read-only area corresponds to the start of the read/write area. You should not
therefore rely on this being true.

The read/write (data) area may contain code, as programs are sometimes
self-modifying. Similarly, the read-only (code) area may contain read-only data
(e.g. strings, floating-point constants etc.).

Command line interface

The format of the Link command is:

Link options file_list

Options

Abbreviations are shown capitalised.

Image$$RO$$Base Address of the start of the read-only (code) area.

Image$$RO$$Limit Address of the byte beyond the end of the code area.

Image$$RW$$Base Address of the start of the read/write (data) area.

Image$$RW$$Limit Address of the byte beyond the end of the data area.

Image$$ZI$$Base Address of the start of the zero-initialised (bss) area.

Image$$ZI$$Limit Address of the byte beyond the end of the bss area.

General options

-Output file Put final output in file

-Debug Include debugging information in image

-ERRORS file Put diagnostics to file, not stderr

-LinkVersion vers Aborts the link if link isn't at least that specified
as a parameter. This can be used to ensure you
have a new enough linker to support the things
you are needing it to do. For example, to check
that the linker supports the initialisation of static
data in modules, use:

-LinkVersion 5.25

-LIST file Put Map and Xref listing to file, not stdout

-VIA file Take more object file names from file
162

Link
-Verbose Give informational message while linking

-MAP Print an area map to the standard output

-Xref Print an area cross-reference list

-Symbols file List symbol definitions to file

-SymDefs file Create or update ARM SYMDEFS definition in
file. These files are compatible with ADS, the
ARM Development System. The file will contain a
textual symbol table that the linker can also
input. This can be useful in certain cases and it is
used by RISC OS ROM modules which use the
Shared C library SYMDEFS.

Output options

-AIF Absolute AIF (the default)

-AIF -Relocatable Relocatable AIF

-AIF -R -Workspace n Self-moving AIF

-AOF Partially linked AOF

-BIN Plain binary

-BIN -AIF Plain binary described by a prepended AIF header

-IHF Intellec Hex Format (readable text)

-SPLIT Output RO and RW sections to separate files
(-BIN, -IHF)

-SHL file Shared-library + stub, as described in file

-SHL file -REENTrant Shared-library + reentrant stub

-RMF RISC OS Module

-OVerlay file Overlaid image as described in file

-ELF Executable and Linking Format

-ELF -Partial Partially linked ELF output

-UTIL RISC OS transient utility

Special options

-RO-base n

-Base n Specify base of image

-RW-base n

-DATA n Specify separate base for image's data
163

Command line interface
-Entry n Specify entry address

-Entry n+obj(area) Specify entry as offset n within area found in
object file obj (prefix n with & or 0x for hex;
postfix with K for *210, M for *220)

-Case Ignore case when symbol matching

-MATCH n Set last-gasp symbol matching options

-FIRST obj(area) Place area from object obj first in the output
image

-LAST obj(area) Place area from object obj last...

-REMOVE Remove unused areas

-NOZEROinit Explicitly initialise all zero-init areas. This means
the linker will place explicit zero bytes in the
image and there will not be any zero-init areas
that are zeroed at runtime by the executable's
initialisation code

-NOUNUSEDareas Don't eliminate AREAs unreachable from the
AREA containing the entry point (AIF images
only)

-Unresolved sym Make all unresolved references refer to sym

-rescan Instructs the linker to rescan the libraries to
satisfy unresolved references imported from
objects in later libraries. This option should not
be used routinely – only when co-dependent
libraries are being used.

-C++ Support C++ external naming conventions
164

15 ModSqz

odSqz compresses a relocatable module, saving disc space and potentially

making the module load faster.

The SetUp dialogue box

Clicking Select on the application icon or dragging the name of a file (if Auto Run
is off) from a directory display to the icon brings up the SetUp dialogue box:

The Input writable icon allows you to specify the name of a file to be processed
(typed in or dragged from a directory display). This file must be a relocatable
module.

Try harder will force ModSqz to compress the file even if the file is considered by
ModSqz to be too small to warrant compression.

Verbose outputs messages and compression statistics.

The SetUp menu

Clicking Menu on the SetUp dialogue box displays the following menu on the
screen:

For a description of the ModSqz Command line options see the section Command
line interface on page 166.

M

165

The Application menu
The Application menu

Clicking Menu on the ModSqz application icon gives the following options:

When Auto save is enabled, squeezing overwrites the input file with the squeezed
version automatically without producing a save dialogue box for you to drag the
file from. Auto save is off by default, whereas Auto Run is on by default.

For a description of each option in the application menu see the chapter General
features on page 103.

Example output

The output of ModSqz appears in one of the standard non-interactive tool output
windows. For more details of these see the section Output on page 107.

The following window shows an example of the output from ModSqz, together with
a standard save dialogue box (which appears if Auto Save is not enabled):

Command line interface

For normal use you do not need to understand the syntax of the ModSqz command
line, as it is automatically generated for you from the SetUp dialogue box settings.
The command line syntax for ModSqz is:

ModSqz [options] unsqueezed-file [squeezed-file]
166

ModSqz
Options

-f compress file regardless of size

-v output messages and compression statistics

unsqueezed-file a valid pathname specifying an input module file

squeezed-file a valid pathname specifying an output module file
167

Command line interface
168

16 ObjSize

bjSize analyses one or more object or library files and returns the code-size,

data-size and debug-size of each file.

The SetUp dialogue box

Clicking Select on the application icon or dragging the name of a file (if Auto Run
is off) from a directory display to the icon brings up the SetUp dialogue box:

The Files field allows you to specify the name of one or more files to be processed
(typed in or dragged from a directory display). These files must be ALF or AOF files.

The SetUp menu

Clicking Menu on the SetUp dialogue box displays the menu shown on the left.

For a description of the ObjSize Command line option see the section Command
line interface on page 170.

The Application menu

Clicking Menu on the ObjSize application icon gives the following options:

For a description of each option in the application menu see the chapter General
features on page 103.

O

169

Example output
Note that Auto Save is not available for this application, and that Auto Run is
enabled by default.

Example output

The output of ObjSize appears in one of the standard non-interactive tool output
windows. For more details of these see the section Output on page 107.

The following window shows an example of the output from ObjSize:

The three object sizes displayed by ObjSize are:

code-size The size of the object code.

data-size The total size of all areas in the AOF file which have the attribute
data or zero-Init.

debug-size The total size of all areas in the AOF file (compiled with the debug
option set) which have the attribute debug.

If a library file is being analysed ObjSize displays the above three object sizes for
each individual member of the library file and then displays the overall totals of
these to provide a set of totals for the entire library.

Command line interface

For normal use you do not need to understand the syntax of the ObjSize command
line, as it is automatically generated for you from the SetUp dialogue box settings.
The Command Line syntax for ObjSize is:

ObjSize filename [filename...]

filename a valid pathname specifying an ALF or AOF file.
170

17 SID

ID is a general-purpose disassembler for ARM binaries. It does not currently

disassemble Thumb binaries.

As the binary is processed, SID can generate various warnings about potentially
problematic constructs. For example, code which is not 32-bit safe, instructions
with Undefined or Unpredictable behaviour or branches to locations outside the
binary.

SID makes an attempt at intelligently deciphering common structures, like C
functions, branch tables, module SWI tables, etc. To do all this, SID must employ
various heuristics because, even though assembling (or even compiling) source
code into binary is a systematic process, conversion in the opposite direction is
not.

Full documentation can be found in the file Documents.DDE.SID

S

171

172

18 Squeeze

queeze compresses an executable ARM-code program, saving disc space and

often making the program load faster.

It is also possible to squeeze relocatable modules, but it is better to use the
ModSqz tool for this purpose (see page 165). If a module is squeezed it is
converted into a program which installs the module in the RMA when run. This
program contains a binary image of the module within itself. Squeeze compresses
this program. In contrast, modules compressed with ModSqz are still modules.

The SetUp dialogue box

Clicking Select on the application icon or dragging the name of a file (if Auto Run
is off) from a directory display to the icon brings up the SetUp dialogue box:

The Input writable icon allows you to specify the name of a file to be processed
(typed in or dragged from a directory display). This file must be an AIF file.

Try harder will force Squeeze to compress the file even if the file is considered by
Squeeze to be too small to warrant compression.

Verbose outputs messages and compression statistics.

The SetUp menu

Clicking Menu on the SetUp dialogue box displays the following menu on the
screen:

For a description of the Squeeze Command line option see the section Command
line interface on page 174.

S

173

The Application menu
The Application menu

Clicking Menu on the Squeeze application icon gives the following options:

When Auto save is enabled, squeezing overwrites the input file with the squeezed
version automatically without producing a save dialogue box for you to drag the
file from. Auto save is off by default, whereas Auto Run is on by default.

For a description of each option in the application menu see the chapter General
features on page 103.

Example output

The output of Squeeze appears in one of the standard non-interactive tool output
windows. For more details of these see the section Output on page 107.

The following window shows an example of the output from Squeeze, together with
a standard save dialogue box (which appears if Auto Save is not enabled):

Command line interface

For normal use you do not need to understand the syntax of the Squeeze command
line, as it is automatically generated for you from the SetUp dialogue box settings.
The command line syntax for Squeeze is:

Squeeze [options] unsqueezed-file [squeezed-file]
174

Squeeze
Options

-f compress file regardless of size

-v output messages and compression statistics

unsqueezed-file a valid pathname specifying an input AIF file

squeezed-file a valid pathname specifying an output AIF file
175

Command line interface
176

19 UnModSqz

nModSqz reverses the effect of the ModSqz tool, expanding a compressed

module back to its original state.

The SetUp dialogue box

Clicking Select on the application icon or dragging the name of a file (if Auto Run
is off) from a directory display to the icon brings up the SetUp dialogue box:

The Input writable icon allows you to specify the name of a file to be processed
(typed in or dragged from a directory display). This file must be a relocatable
module.

Verbose outputs messages and compression statistics.

The SetUp menu

Clicking Menu on the SetUp dialogue box displays the following menu on the
screen:

For a description of the UnModSqz Command line options see the section
Command line interface on page 178.

U

177

The Application menu
The Application menu

Clicking Menu on the UnModSqz application icon gives the following options:

When Auto save is enabled, unsqueezing overwrites the input file with the
expanded version automatically without producing a save dialogue box for you to
drag the file from. Auto save is off by default, whereas Auto Run is on by default.

For a description of each option in the application menu see the chapter General
features on page 103.

Example output

The output of UnModSqz appears in one of the standard non-interactive tool
output windows. For more details of these see the section Output on page 107.

The following window shows an example of the output from UnModSqz, together
with a standard save dialogue box (which appears if Auto Save is not enabled):

Command line interface

For normal use you do not need to understand the syntax of the UnModSqz
command line, as it is automatically generated for you from the SetUp dialogue
box settings. The command line syntax for UnModSqz is:

UnModSqz [options] squeezed-file [unsqueezed-file]
178

UnModSqz
Options

-v output messages and compression statistics

squeezed-file a valid pathname specifying an input module file

unsqueezed-file a valid pathname specifying an output module file
179

Command line interface
180

20 Xpand

pand reverses the effect of the Squeeze tool, expanding a compressed

ARM-code program back to its original size.

The SetUp dialogue box

Clicking Select on the application icon or dragging the name of a file (if Auto Run
is off) from a directory display to the icon brings up the SetUp dialogue box:

The Input writable icon allows you to specify the name of a file to be processed
(typed in or dragged from a directory display). This file must be a squeezed AIF file.

The SetUp menu

Clicking Menu on the SetUp dialogue box displays the following menu on the
screen:

For a description of the Xpand Command line options see the section Command line
interface on page 183.

X

181

The Application menu
The Application menu

Clicking Menu on the Xpand application icon gives the following options:

When Auto save is enabled, expanding overwrites the input file with the expanded
version automatically without producing a save dialogue box for you to drag the
file from. Auto save is off by default, whereas Auto Run is on by default.

For a description of each option in the application menu see the chapter General
features on page 103.

Example output

The output of Xpand appears in one of the standard non-interactive tool output
windows. For more details of these see the section Output on page 107.

When Xpand runs successfully the output window will be empty. The following
example shows this, together with the standard save dialogue box which appears if
Auto Save is not enabled:
182

Xpand
Command line interface

For normal use you do not need to understand the syntax of the Xpand command
line, as it is automatically generated for you from the SetUp dialogue box settings.
The command line syntax for Xpand is:

Xpand squeezed-file [unsqueezed-file]

Options

squeezed-file a valid pathname specifying an input AIF file

unsqueezed-file a valid pathname specifying an output AIF file
183

Command line interface
184

21 Adding your own desktop tools

he underlying technologies used in Acorn C/C++ have been designed in a way

which allows third parties to add tools and applications, provided that they

follow a number of rules and conventions which are given in this section. Unless
you are a software developer, intending to use these technologies in your products,
or intending to add further desktop tools, then you can skip this section. (Of course
you may just be interested in how it all works, in which case read on!).

The FrontEnd module will act as a generic application, as described in the chapter
General features on page 103. It is assumed here that you are familiar with this
chapter, and that you have a feel for how the non-interactive tools operate.

The extensions you can make fall roughly into the following categories:

● Adding a compiler for another language – this will require all of the
information given below.

● Adding a utility that you wish to run under the desktop, with the same look and
feel as the other desktop non-interactive tools. For instance you may like to
port the UNIX sed stream editor to RISC OS, with a Wimp front end – this only
requires knowledge of how to describe an application to the FrontEnd module.

● Creating your own project management tool, similar to Make – this will require
knowledge of the message-passing protocols used with the FrontEnd module,
and also the format of a makefile used to maintain a project.

In this chapter you will find further technical information on the following:

● the FrontEnd module

● the DDEUtils module

● the SrcEdit editor

● the Make project management tool.

T

185

The FrontEnd module
The FrontEnd module

Overview

The purpose of the FrontEnd module is to ease the job of putting consistent Wimp
frontends onto a number of simple tools which are normally driven from the
command line (e.g. Link, CC, ObjAsm etc.). A Wimp application can then be made
by supplying a formal description of the mapping between the Wimp interface and
command line options, a templates file, !Run, !Sprites and !Boot files, a message
file, and a !Help file (also a !SetUp file if this is to be used by Make – see Make on
page 203 for more details).

To give you a feel for how the FrontEnd module interacts with your command line
tool, here is a brief description of how it works. The FrontEnd module understands
two star commands:

*FrontEnd_Start

*FrontEnd_SetUp

The former of these is used to invoke a Wimp front end for a tool, with an icon on
the icon bar; the latter is used to allow Make options for the tool to be set using a
Wimp interface.

*FrontEnd_Start

When the FrontEnd module gets a *FrontEnd_Start command it creates a new
instantiation of itself called FrontEnd%toolname where toolname is the name
of the tool invoked; it then enters that instantiation as the current application, and
does a SWI WimpInitialise to become a Wimp task. Because this task stops the
Wimp from mapping out its application workspace, by responding to service call
0x11, the task appears in the applications task list of the Task Manager display.
From this point on, the behaviour of the Wimp task is governed by the formal
description file which was initially passed to the *FrontEnd_Start command.

*FrontEnd_SetUp

The *FrontEnd_SetUp command is similar, except it calls its new instantiation
FrontEnd%Mtoolname, and does not produce an icon on the icon bar. The
templates for windows used by the application must be provided by you, and they
must follow the conventions laid down later in the section Template files on page 190.

When the user causes the command line tool to be run (for example by clicking on
the Run icon in the application’s dialogue box), the FrontEnd module starts up a
task called toolname_task running under the control of the task window
module; thus the tool is pre-emptively multitasked, and any output the tool
186

Adding your own desktop tools
produces is stored and will be displayed in a window, if this is what the user
wishes. When the user quits the application, the FrontEnd module ensures that
the relevant instantiation is also removed from the RISC OS module list.

Example

To be suitable, your command line program has to be non-interactive. This means
it should start with a command line, then run to error or completion without any
further user interaction, outputting reports as screen text. A compiler such as CC
fits this description, but an editor such as SrcEdit does not.

The tool ToANSI is a simple example of the non-interactive desktop tools. You may
find it instructive to examine the file Desc in Apps.DDE.!ToANSI.

Changes since previous versions

This section describes FrontEnd v1.27 which has been significantly extended since
the version released with the fifth release of Acorn C/C++.

The major changes are:

● New ctrl_chars and tab_width keywords for controlling text output

● Text output is now displayed immediately, rather than waiting for a newline
(this allows progress indicators to output a series of dots for example)

● Text output lines may be terminated with CR, LF, CR+LF or LF+CR

● quoted_string keyword includes text inside quotes

● Icons can now be made to generate text when they are de-selected

Producing a complete Wimp application

In order to produce a complete Wimp application you will need to provide the
following:

● !Run, !Boot and (possibly) !SetUp files

● a !Sprites file

● a Templates file

● a Description file

● a Messages file (optional)

● a !Help file (optional).

These are described in more detail below.
187

Producing a complete Wimp application
!Run, !Boot and !SetUp files

Your !Boot file will be the same as for normal applications, including doing things
like setting file types, and performing *IconSprites commands on your sprites.

A typical !Run file will look like any of those supplied with the desktop
non-interactive tools, such as !Link, !Find, or !Diff. The size of Wimpslot does not
depend in any way on the size of the command-line tool which is running under the
FrontEnd module, but instead refers to the application workspace used by the
module, when starting up as a Wimp task (currently a minimum of 16k). You should
ensure that you have a command of the following form:

*Set toolname$Dir <Obey$Dir>

so that your resource files can be found. Having made sure that the FrontEnd and
Task Window modules are loaded (by using *RMEnsure) you then issue the
*FrontEnd_Start command with application name and full pathname of the
description file as parameters. You may need the facilities provided by the
DDEUtils module, in which case you should *RMEnsure it in your !Run file

For example for !Diff, the !Run file is:

*If "<System$Path>" = "" Then Error 0 System resources cannot be found
*WimpSlot -Min 128k -Max 128k
*IconSprites <Obey$Dir>.!Sprites
*Set Diff$Dir <Obey$Dir>
*RMEnsure UtilityModule 3.10 Error This application only runs on RISC OS 3 (version
3.10) or later
*RMEnsure SharedCLibrary 5.34 Error This application requires the Shared C Library
module (is it unplugged?)
*RMEnsure FPEmulator 2.87 Error This application requires the FP Emulator module
(is it unplugged?)
*RMEnsure TaskWindow 0.47 Error This application requires the Task Window module
(is it unplugged?)
*RMEnsure FrontEnd 0 System:modules.frontend
*RMEnsure Frontend 1.21 Error You need version 1.21 of the FrontEnd module to run
!Diff
*RMEnsure DDEUtils 0 System:modules.ddeutils
*RMEnsure DDEUtils 1.52 Error You need version 1.52 of the DDEUtils module to run
!Diff
*WimpSlot -Min 32k -Max 32k
*FrontEnd_Start -app Diff -desc <Diff$Dir>.desc

A typical !SetUp file is very similar to a !Run file, but will be used when the
FrontEnd module gets a request from Make to start up the Wimp front end for a
tool, to allow the user to set options from a dialogue box. This file should only
need to do the following:
*Set toolname$Dir <Obey$Dir>
*RMEnsure FrontEnd 0 System:modules.frontend
*RMEnsure Frontend 1.31 Error You need version 1.31 of the FrontEnd module to set
the toolname options from Make
*WimpSlot -min 16k -max 16k
*FrontEnd_SetUp -app %0 -desc %1 -task %2 -handle %3 -toolflags %4

Again, examples of a !SetUp file can be found in the set of non-interactive desktop
tools.
188

Adding your own desktop tools
!Sprites file

The !Sprites file will contain the sprite for the application icon on the icon bar, and
also optionally a small sprite, both of which should comply with RISC OS style. The
name of the large sprite should be the same as the application (e.g. !Link, !Find
etc).
189

Producing a complete Wimp application
Template files

The set of window templates which you should supply in a file called Templates
is as follows:

Window name Status Details

progInfo Mandatory Should be as standard Acorn applications
information boxes.

Icon #1 must be indirected text, with a
buffer size large enough to accept the
application name.

Icon #4 must be indirected text, with a
buffer size large enough to accept the
version string.

SetUp Mandatory This dialogue box is used to set the most
common options for the command line
tool. Rarer options can be set from a
menu by the user pressing the Menu
button on this dialogue box. The title bar
must be indirected text, and have a buffer
size large enough to accept the
application name.

Icon #0 must be indirected text (buffer
size 12 bytes), and have a button type of
Click, and should contain the text Run.
It is used to invoke the command line
tool with the chosen options.

Icon #1 must be text, and have a button
type of Click, and should contain the
text Cancel. It is used to close the
Options dialogue box, and revert to the
options settings as they were when the
dialogue box was last opened.

Other icons are of your choice, and can be
used to map to command line options.
You must, however, follow the
conventions described in the section
Writing an application description on
page 192.

All icons must be de-selected in the
template file – the default values should
be set in the Description file.
190

Adding your own desktop tools
CmdLine Mandatory This dialogue box is used to show the
command line equivalent of the options
which the user has chosen. The title bar
should contain some explanatory text like
Command Line.

Icon #0 must be indirected text with
buffer size 12 bytes, with button type
Click, and containing the text Run. It is
used to invoke the command line tool
with the shown command line.

Icon #1 must be indirected text with
buffer size typically at least 256 bytes, and
with a button type of Writeable.

Help Optional Used to display help text when the user
selects Help from the application’s main
menu. The title bar should contain some
appropriate text. The window should not
have its Auto-redraw flag set.

query Mandatory Used to ask the user if they really want to
kill off a task which is running.

Icon #0 must be text, button type Click,
and is used to reply Yes.

Icon #1 must be indirected text, buffer
size 256 bytes.

Icon #2 must be text, button type Click,
and is used to reply No.

Output Optional Used to display in a scrolling window, the
textual output of the command line tool.
The window’s Auto-redraw flag must
not be set.

The title bar must be indirected text, and
have a buffer size large enough to accept
the application name, plus a space and
the string (Completed).

Window name Status Details
191

Producing a complete Wimp application
Writing an application description

As previously mentioned, your application running under the FrontEnd module is
driven by a formal description written in a language whose EBNF (Extended
Backus Naur Form) grammar is given in appendix FrontEnd protocols on page 231.
This section gives an explanation of the semantics of the language, and hence
explains how to write your own description.

As can be seen from the EBNF rule in appendix FrontEnd protocols for an application,
the description file consists of 10 sections, with only the first section being
mandatory (TOOLDETAILS). Each of these sections is described separately below,
and the sections that are used must appear in the order shown below.

Summary Optional Used to give a summary of the textual
output produced by the command line
tool.

Icon #2 must be text, with button type
Click, containing the text Abort. It is
used to abort the task.

Icon #3 must be indirected text, with a
buffer size large enough to hold strings
Pause and Continue, button type
Click. It is used to pause and continue
the task.

xfer_send Mandatory if
the Tool
produces
output that
the user is
able to save

Used as a save dialogue box for the
textual output of a tool.

Icon #0 must be text, with button type
Click, containing the text OK.

Icon #2 must be indirected text, with a
buffer size of 256, and button type
writeable.

Icon #3 must be indirected text.

save Mandatory if
user is able
to save
anything

As for xfer_send, but is used to save the
result file generated by running the tool.
It should also have a close icon.

Window name Status Details
192

Adding your own desktop tools
TOOLDETAILS section

The tool details section is the only section which you must have in the description.
The section starts with the name of the tool, which must be the same as the string
passed as the -app parameter to *FrontEnd_Start. This name will be used in
window and menu title bars to identify the application.

Normally the tool will reside in your current library directory, and hence the
command will be invoked using only the tool name. If you wish to change this you
can specify a command_is entry, which gives a pathname for the tool. For example
if you have an application called example, but the executable image for this
application is held in !RunImage in the application directory, then you should have
a line in the description file saying:

command_is "<example$Dir>.!RunImage";

The version entry will typically be a version number and optional date for the
tool. These will be used in the Program Information dialogue box (progInfo).

If your tool understands a particular file-type, then this can be entered using the
keyword filetype. This is used when the user double-clicks on a file of this type
in a directory display. The effect is as if the user has dragged the file icon to your
icon on the icon bar.

By default the tool is run in a Wimpslot of 640k, under the Task Window module. If
you want this value to be different, then use the Wimpslot command in the
description.

Since the limit on RISC OS command lines is 256 characters for RISC OS 3.00
(1,024 characters for RISC OS 4.00 and later versions), you may find this to be an
unnecessarily strict limit when passing a potentially large list of full pathnames to
a tool on its command line. If you use the has_extended_cmdline keyword in
the description, then the FrontEnd module will request space from the DDEUtils
module to place the command line arguments in. If the tool is written in C (or runs
under any other run-time environment which cooperates with DDEUtils) the tool
will pick up the arguments from DDEUtils. Using this option, your command line is
limited only by the size of the writable icons in your dialogue boxes. If written in C,
the tool must have been linked with the stubs or ANSILib to use this feature.

METAOPTIONS section

The METAOPTIONS section refers to non-application-specific options.

If the has_auto_run keyword is used, the application’s main menu option Auto
Run will not be greyed out. In addition, if you include the keyword on, then this
option will be enabled by default. Auto Run means that if a file is dragged to the
application icon, then the tool will immediately be run, rather than first displaying
the Options dialogue box.
193

Producing a complete Wimp application
The has_auto_save keyword refers to the Auto Save option in the application’s
main menu, and the keyword on turns this option on by default. If this option is on,
then rather than producing a Save as dialogue box to save the file output of the
tool, the tool is run to directly write to the desired output place. The location where
output should be sent is given following the has_auto_save keyword; in order
to specify this location, you must first give an icon number in the Options dialogue
box, whose first entry will be used to determine the directory where the output will
go (using the from icn <integer> keywords).

For example, if you have the line:

has_auto_save ^."!RunImage" from icn 3;

and icon 3 of the options dialogue box contains the text:

adfs::4.$.objects.file1 adfs::4.$.objects.file2

then the filename adfs::4.$.objects.file1 will be used to form the output
filename. First the leafname file1 is stripped off to leave the directory name
adfs::4.$.objects which will form the stub of the output filename. This stub
is then manipulated by the string which is specified between the keyword
has_auto_save and the keyword from. You can indicate parent directories
using any (reasonable) number of ^.s and can refer to the original leafname using
the keyword leafname (in this example leafname would map to file1). This
leafname can have literal strings prepended or appended to it.

If the application is to have textual output, then you can specify that you want text
and/or summary window(s) by using the keywords has_text_window and
has_summary_window. Beware that if you don’t have any output windows at all,
then the user has no way of pausing/aborting/examining the running task. The
default display mode is text, but this can be explicitly stated as text or summary
using the keyword display_dft_is.

When writing to a text window, control characters (other than tab and newline) are
normally filtered out and replaced with question marks and tab characters
normally generate a single space. This default behaviour can be changed by using
the following keywords:

ctrl_chars escape causes control characters to be output as lower case
two-digit hexadecimal numbers in square brackets, for example [1f].

ctrl_chars hide causes control characters to be suppressed and not output.

ctrl_chars text causes control characters to be output as a question mark.

tab_width n sets the tab width to n where n is 0 to hide tabs, 1 to show tab
characters as a single space or 2-32 for true tab points of the specified width.
194

Adding your own desktop tools
The saved output is not affected by the settings of ctrl_chars and tab_width
as it is always the received data that is saved, not the data as it appears in the
window.

FILEOUTPUT section

The FILEOUTPUT section deals with the production and saving of a single output
object. To enable the user to then save this output, it is sent to a temporary file,
which is then copied to a permanent file when the corresponding icon is dragged
to a directory display – the icon can also be dragged to another application.

By default it is assumed that the output filename for a tool is that which appears
last on the command line with no special preceding flag. If your command line tool
requires a flag such as -o to go before the output filename, then this is specified
using the output_option_is keyword.

Also by default, the name which appears in the Save as dialogue box is the string
Output, assuming that no Auto Save string has been specified. This can be
changed using the output_dft_string keyword.

Certain tools produce an output file, or not, depending on the combination of
options on their command line. By using the output_dft_is keyword, you can
specify whether the default mode of operation is to produce output or not. This
state will then be changed as the user chooses options from the options dialogue
box and menu which either turn output production on or off (see the DBOX section
and the MENU section).

DBOX section

The DBOX section describes the properties of the main dialogue box used to set
options for the command line tool.

The purpose of the icon definitions is to show how icon clicks and drags etc. map
onto command line option strings, and how these affect the state of other icons
and menu entries. Essentially, icon numbers correspond to those numbers used in
the template for the dialogue box.

There are four types of icon definition:

1 those that map directly onto command line strings

2 those that increase or decrease the numeric value of another icon

3 those that cause a string to be inserted in a writable icon

4 those that extend and contract the dialogue box.

The most complex of these is the icon which maps to a command line string. Such
an icon can be of two Wimp types:

● a writable indirected text icon
195

Producing a complete Wimp application
● a click icon.

The former of these contributes to the command line, if it contains any text, and is
generally used for specifying filenames to the command line tool. The latter is
generally used to turn flags on and off, and contribute to the command line. The
mapping onto the command line is given after the keyword maps_to; this may
begin with an optional string literal (e.g. -f), optionally followed by keywords
string, quoted_string or number. These latter keywords are used for
writable indirected text icons, and refer to their contents.

The quoted_string variant puts the string inside double quotes. For example,
given a writable field at icon 20 holding text 'hello "world"':

icn 20 maps_to "-display " quoted_string;

icn 20 maps_to "-display " quoted_string prefix_by "-I";

would, respectively, result in:

-display "hello \"world\""

-display "-Ihello -I\"world\""

If you want each item in the writable text icon to be preceded by a particular string,
this can be specified using the prefix_by keyword.

The keywords on and off may be used after the icon to indicate whether the
mapping applies when the click icon is selected or de-selected. If both are absent
on is assumed.

You can also specify that selecting this icon causes the values of other icons to be
used in the command line, by using the followed_by keyword. These items will
be separated by the entry given after the separator_is keyword. As discussed in
the FILEOUTPUT section, it is possible to specify whether a tool produces output
by default; each icon can be made to toggle this state using the keywords
produces_no_output and produces_output. The not_saved keyword
should be used if the value of the particular icon should not be saved when the
user picks the Save options entry from the application’s main menu.

Some examples should make this clearer:

icn 3 maps_to "-c";

This would be used for a click icon, which when selected will result in -c being
inserted into the command line.

icn 3 on maps_to "-c";

icn 3 off maps_to "-x";
196

Adding your own desktop tools
The first line has behaves exactly as in the previous example. The second line
causes -x to be inserted into the command line if icon 3 is de-selected.

icn 6 maps_to "-f " string not_saved;

This would be used for a writable indirected text icon, whose string contents
should follow the literal -f on the command line. It would typically be used for
specifying input filename(s). The contents of icon 6 would not be saved when the
user chose the Save options menu entry.

Using the increases or decreases keyword is typically used for arrow icons,
used to increase and decrease the numeric value of another icon. The default
amount by which the increase or decrease is made is 1, but this can be changed
using the keyword by. Minimum and maximum values can also be specified. The
button type of such an arrow icon should be click or auto-repeat.

If an icon should just be used to insert a useful string in another writable
indirected text icon, then this is specified using the keyword inserts. Whenever
such an icon is clicked, the given string literal is inserted into the keyboard buffer,
if the options dialogue box currently has the input focus. Its button type should be
Click.

The extends keyword is used for an icon which is used to toggle the options
dialogue box, from large to small and vice versa. The from icon number is the icon
which is used to mark the bottom of the dialogue box when small; the to icon
number is the icon which is used to mark the bottom of the dialogue box when
large.

The list of icon definitions can optionally be followed by a list of icon default
values, using the keyword defaults. Each icon can be listed with the keywords
on and off for click icons, or a string or numeric literal value for writable
indirected text icons. These defaults refer to those used when the tool is invoked
via *FrontEnd_Start; if the tool has different options by default when invoked from
Make, these are listed using the make_defaults keyword.

Following this in the description is an optional specification of what happens when
drags occur, from the filer or from other applications. After the keyword
imports_start, which begins this part of the description, you can optionally
specify a wild_card_is string, which is used whenever a directory is dragged to
your application. Typically this wildcard will be *. Hence a directory
adfs::4.$.foo dragged onto the application will expand to
adfs::4.$.foo.*. There then follows a list of drag_to specifications, each of
which gives either a specific icon number in the dialogue box, or the keywords any
or iconbar; the icon list following the word inserts is where the filenames of
the dragged files will be inserted, with an optional separator string. If no separator
string is given then a drag will overwrite the previous contents of the writable
indirected text icon. Here are some examples:
197

Producing a complete Wimp application
drag_to icn 3 inserts icn 3;

This means that a drag onto icon 3, will insert the filename into icon 3, and
subsequent drags to this icon will overwrite it.

drag_to icn 6 inserts icn 6 separator_is " ";

drag_to any inserts icn 6 separator_is " ";

drag_to iconbar inserts icn 6;

These means that a drag to icon 6, or anywhere else on the dialogue box, or to the
icon bar will insert the filename of the dragged icon in icon number 6. In the case
of the iconbar, the contents of icon 6 will be overwritten.

It is not possible to use followed_by and prefix_by at the same time. For
example, if icon 20 is an option button, 21 is a label and 22 a writable, the following
is not possible:

icn 20 on maps_to "-e " followed_by icn 22 prefix_by "-I";

icn 22 maps_to "";

However the desired effect can be achieved as follows:

icn 20 maps_to "";

icn 22 maps_to "-e " string prefix_by "-I";

MENU section

The MENU section is similar to the DBOX section, except that it is used to specify
the way that menu entries on the menu attached to the options dialogue box map
to command line option strings. This menu is typically for less commonly used
options.

Each entry in the menu entry list begins with a literal string, which is used to give
the text that will appear in that menu entry. This may be followed by the keywords
on and off to indicate whether the mapping applies when the menu item is
selected or de-selected. If both are absent on is assumed.

This is followed, after the keyword maps_to, by string literal (which may be null)
to which that menu entry maps in the command line. This is optionally followed by
the keyword sub_menu, in which case this menu entry will be given a writable
submenu with the given string literal as its title, and with a buffer size given by the
supplied integer value. If you want each item in the submenu buffer to be preceded
by a particular string, this can be specified using the prefix_by keyword. The
produces_output, produces_no_output and not_saved keywords are as
described above for the DBOX section.
198

Adding your own desktop tools
Menu default values can be set in a similar manner to those for the dialogue box
icons. This is done using the defaults keyword, and then following each menu
entry with the keyword on or off depending on the desired default state of that
entry. If the entry has a writable submenu, this can also be given a default string or
integer value. Also a separate set of option defaults can be set for when the
FrontEnd module is invoked from Make. Menu entries are numbered from 1
(ignoring the command line equivalent entry).

For example:

 menu_start
"First option" maps_to "-a";
"Second option" maps_to "-b " sub_menu "Value: " 8;

 defaults
 menu 1 off,
 menu 2 on sub_menu "42";
 menu_end

will result in a menu with two entries (other than the command line equivalent,
which is always the first entry). By default First option will not be ticked, but
Second option will be ticked and its writable submenu will contain the value 42.

SELECTIONS section

This section allows you to state which options when enabled should enable other
options. This can be done for both icons in the main options dialogue box and for
entries in its attached menu. For example:

selections_start
icn 3 selects icn 4, icn 5, menu 3;

selections_end

means that when icon 3 is selected, then icons 4 and 5 and menu entry 3 will be
selected.

on and off keywords may be used to indicate that deselecting an icon should
cause the action respectively (the on keyword is redundant as it is assumed if
absent, but it may be used for clarity). For example:

icn 3 off selects icn 4, icn 5, menu 3;

means that when icon 3 is selected, then icons 4 and 5 and menu entry 3 will be
selected too.

DESELECTIONS section

This works just like the selections section described above:
199

Producing a complete Wimp application
deselections_start
icn 3 on deselects icn 4, icn 5, menu 3;

deselections_end

means that when icon 3 is selected, then icons 4 and 5 and menu entry 3 will be
deselected.

INCLUSIONS section

The INCLUSIONS section is similar to the SELECTIONS section, except that the
listed icons and menu entries are made selectable rather than selected. When the
icon or menu which caused this inclusion is deselected, then the included items
become selectable again.

Inclusions can be useful where, for example, turning on an option box makes a
writable field valid (e.g. an output filename for some logging text).

MAKE_EXCLUSIONS section

Certain tools require that some options are made unselectable when the FrontEnd
module is invoked from Make. The MAKE_EXCLUSIONS section allows these icons
and menu entries to be listed.

EXCLUSIONS section

The EXCLUSIONS section is similar to the INCLUSIONS section, except that the
listed icons and menu entries are made unselectable (greyed out). When the icon
or menu which caused this exclusion is deselected, then the excluded items
become selectable again.

RULES section

To simplify the rules and make them more readable it is possible to include all of
the selections, deselections, inclusions and exclusions in a single rules section.
This may be used to replace those sections or it may follow them to provide
additional rules.

The RULES section is formatted in the following way:

rules_start
<list [on|off]> <selects|deselects|includes|excludes> <list>;

rules_end
200

Adding your own desktop tools
For example:

rules_start
icn 3 off selects icn 10;
menu 3 on deselects icn 4;
menu 3 on excludes icn 5, icn 6, menu 4;

rules_end

Rules may appear in any order within the rules section.

Rules are executed recursively when an icon state changes. For example, if the user
were to switch on icon 4 given the following:

icn 4 selects icn 5;
icn 5 selects icn 6;
icn 6 selects icn 7, icn 8;
icn 8 deselects icn 5;

then icons 5, 6, 7 and 8 would be selected, but the selection of icon 8 would
deselect icon 5, so that would be deselected again. The calculation of rules is done
internally and the front-end updated only with the final outcome, so for most valid
rules minimal flicker would be observed for these kind of complex rules. Circular
references should be avoided but should not lead to problems as FrontEnd should
spot them.

ORDER section

By default the command line for the tool is constructed in the following order:

1 the dialogue box icons in the order given in the DBOX section

2 the menu entries in the order given in the MENU section

3 the output option if appropriate.

If this ordering is not satisfactory, you can give another ordering by using the
order_is keyword followed by a list of icon numbers, menu entries and string
literals. This mechanism can be used to insert string literals which always appear
on the command line.

MAKE_ORDER section

The MAKE_ORDER section is similar to the ORDER section, except that it gives a
way of specifying an alternative command line ordering, when invoked from Make.

Messages files

There are a number of textual messages (warnings and errors and the like), which
the FrontEnd module issues. The purpose of the messages file for an application is
to allow internationalisation of the messages. A messages file is supplied with
201

The DDEUtils module
each of the non-interactive tools, which you can use for your application; it should
be in a file called <toolname$Dir>.Messages. If no such file is present, then
FrontEnd’s internal default English messages are used.

Providing interactive help

Responses to interactive help requests are handled by the FrontEnd module. In
each of the desktop non-interactive tools directories you will find a Messages file
for the tool. In this file are help messages for the various dialogue boxes of the
tools. In general a message whose tag field is the name of the dialogue box, is used
when the pointer is not over an icon; when the pointer is over an icon, the icon
number is used to distinguish the help message.

For example, an entry in the messages file of:

SETUP3:This is where you specify the input filenames

will result in the message

This is where you specify the input filenames

appearing in !Help’s interactive help window, when the pointer is over icon number
3 of the SetUp dialogue box.

!Choices file

When the user selects Save choices from the application’s main menu, the current
setting of options is saved in a file <toolname$Dir>.!choices.

The DDEUtils module

The DDEUtils module is intended for three purposes:

● to relax the command line length limit

● to solve the problem of ‘current directory’ under the desktop

● to provide throwback to the editor on finding source errors.

Further details are given in appendix DDEUtils on page 237.
202

Adding your own desktop tools
SrcEdit

Resource files

A language compiler needs to supply three lines of information about itself to
SrcEdit when it is installed. It does this by appending these three lines to the file
<SrcEdit$Dir>.choices.languages of the form shown in appendix SrcEdit
file formats on page 245.

The language help file is used when the user selects a portion of his text and
requests language help on this. The format of entries in the help file is shown in
appendix SrcEdit file formats.

Make

You will have noticed that when the user selects Menu on a project in Make, it is
possible to select options for a tool, by picking the name of that tool from the Tool
options menu. This is done by Make issuing the star command *FrontEnd_SetUp;
the FrontEnd module then replies with a Wimp message (details of which are given
in appendix FrontEnd protocols on page 231) containing the desired command line.

In order to achieve this, a tool which is being added must append six lines to the
file <Make$Dir>.choices.tools_def of the form:

tool_name

extension the string used to identify a source written in this
language; e.g. c for the C language

make_defaults the default options for this tool when in a makefile

conversion_rule i.e. how to convert source files to object files

description_file full pathname of file containing application
description

setup_file full pathname of file containing SetUp actions for
when tool is invoked via Make
203

Make
204

Appendices
205

206

Appendix A: Changes to the tools

he major changes since the final release of the Acorn C/C++ compiler and the
associated tools by Acorn Computers are:T

● Tools are now 32-bit compatible and suitable for use on 32-bit versions of RISC

OS. The APCS-32 ARM Procedure Calling Standard is now supported.

● The Makefile syntax has been greatly extended and is largely compatible with
the GNU Makefile syntax. New features include conditional directives;
inclusion files; simply expanded variables and string functions – see appendix
Makefile syntax on page 209 for details.

● The FrontEnd module has been extended with additional keywords and
improved rule handling for selecting, deselecting and shading groups of icons.
See The FrontEnd module on page 186 for details.

● DecAOF disassemblers know about all 32-bit ARM instructions up to ARMv8,
with an option to disassemble opcodes in UAL syntax.

● DDT emulation is now an order of magnitude faster. It also supports the new
C99 features and emulates ARM instructions up to ARMv8 that the compiler
produces. It is also able to intercept operating system routines it uses when
the OS workspace is located away from zero page.

● Diff, Find and the other tools can now use long filenames, making them
suitable for use with RISC OS 4 and filing systems that allow more than 10
characters.

● ELF and SYMDEFS files can be processed as library members by LibFile.

● The linker now provides initialised static data in modules, new options
including -linkversion and -rescan, support for ARM SYMDEFS and
support for creating transient utilities. Relocations using MOVW/MOVT pairs
of instructions are supported for use with ARMv7 and later. The linker can now
also product Transient Utilities as an output format using -util.

● ResGen is now included. This is a tool for creating resource file data in a form
suitable for use by ResourceFS from a set of input files and corresponding
resource file names. It was originally supplied with Acorn’s Application Note
280 and now has -26bit and -32bit options to select the APCS variant, and
an option to suppress warning about adding zero length files to ResourceFS.

● The A8Time, ABC, SID, ModSqz, UnModSqz and Xpand tools have been added.

● SrcEdit has been updated to support the global clipboard.
207

208

Appendix B: Makefile syntax

his appendix covers the syntax of Makefiles understood by AMU, and the way

they are arranged by Make. If all you need to do is construct and use simple

Makefiles with Make, you do not need to study this information. It is included for
those wishing to study, modify or construct Makefiles manually.

The Makefile syntax used here is very similar to that used by GNU Make and there
should be few difficulties in using GNU-style Makefiles with AMU.

There have also been several enhancements since AMU 5.05 which was supplied
with the original Acorn C/C++ development environment. In particular, functions,
directives and enhanced macros are now available. The ability to include other files
is particularly useful for very large projects as it allows certain rules to be
abstracted into a separate file for including in each Makefile.

Make and AMU

Makefiles may be constructed by hand, using a text editor such as SrcEdit, or
semi-automatically using Make. For more details of operating Make, see the
chapter Make on page 59. Makefiles may be used to run a make job using either
Make or AMU. In both cases, make jobs operate by the command line tool amu
interpreting the Makefile text and issuing command lines to other tools. The
command line tool amu is installed in your library directory.

Command execution

AMU executes commands by calling the C library function system, once for each
command to be executed. In turn, system issues an OS_CLI SWI to execute the
command. Before calling OS_CLI, system copies its caller to the top end of
application workspace and sets the workspace limit just below the copied program.
Any command executed by AMU therefore has less memory to execute in than
AMU had initially (the difference being the size of AMU plus the size of AMU’s
working space).

When the command returns, AMU will be copied back to its original location and
will continue, unless, of course, the command set a bad (non-0) value in the
environment variable Sys$ReturnCode (the C library automatically sets
Sys$ReturnCode to the value returned by main() or passed to exit()). If you
have limited memory on your computer, or you are trying to run AMU in a limited

T

209

Makefile basics
Wimpslot under the desktop, and a program (such as the C compiler) to be run by
AMU needs more memory than is left, you can instruct AMU not to execute
commands directly, but to write them to an output window to be saved and
executed later (see the Don’t execute option of Make and AMU). Of course, in this
case, execution is not terminated or modified by a non-0 return code from a
command.

Finally, note that there is a RISC OS command length limit of 1,024 characters (256
characters in versions older than RISC OS 4.00). The desktop tools such as the
linker and C compiler cooperate with the DDEUtils module to allow much longer
command lines, but care must be taken to avoid generating long command lines
for other operations, such as wipe, etc.

Makefile basics

In its simplest form, a Makefile consists of a sequence of entries which describe

● what each component of a system depends on;

● what commands to execute to make an up-to-date version of that component.

Everything else that you can express in a Makefile is designed to make the job of
description easier for you.

AMU performs two functions for you. Firstly, it expands your description into the
simple form just described: a sequence of explicit rules about how to make each
component of a system. Then it decides which rules need to be applied to make a
completely up-to-date, consistent system. This it does by deciding which
components are older than any of the files they depend on. It then executes the
commands associated with those entries, in an appropriate order.

An example will make all this clear, so let’s look at part of the Makefile for a
graphics converter tool:

tool: o.tool $.gfx.o.jpeglib
link -o tool o.tool C:o.stubs $.gfx.o.jpeglib
squeeze tool

o.tool: c.tool $.gfx.o.jpeglib
cc -I$.gfx c.tool

install:
copy tool %.tool ~cfq
remove tool
remove o.tool

Each entry consists of

● a target, followed by a colon character, followed by
210

Makefile syntax
● a list of files on which the target depends, followed by

● a list of commands to execute to make the target up to date.

Each command line begins with some white space (if you want your Makefile to be
portable to UNIX systems you should begin these lines with a Tab character). For
example, the tool itself is made from o.tool, the compiled tool program, and a
support library called $.support.gfx.o.jpeglib. If either of these files is
newer than tool, or if tool does not yet exist, then the commands to link and
then squeeze should be executed.

But what if o.tool doesn’t yet exist or is not itself up to date? AMU will check this
for you and will not use o.tool without first making it up to date. To do this it will
execute the command(s) associated with the o.tool entry.

Thus AMU might well execute for you:

cc -I$.support.gfx c.tool
link -o tool o.tool C:o.stubs $.gfx.o.jpeglib
squeeze tool

As you can see, if you do this more than once – for example, because you are
developing the program being managed by AMU – it will save you many keystrokes.
Now suppose you don’t have $.gfx.o.jpeglib. What then? Well, the Makefile
doesn’t instruct AMU how to make this so it can do no more than tell you so. Either
you must modify the Makefile to say how to make it or, more likely, obtain a copy
ready-made.

File name truncation

Machines that have file name truncation configured off can result in error
messages being displayed where a Makefile contains a rule where a (non-file)
target name has more than 10 characters.

For example, in the following Makefile extract:

 install_rom: ${TARGET}
 ${CP} ${TARGET} ${DESTINATION}.${TARGET} ${CPFLAGS}
 @echo install_rom complete

typing in:

 *amu install_rom

would result in the following error message:

 AMU: failed to read time stamp for 'install_rom'

If you are going to use long target names you must ensure that file name
truncation is configured on.
211

Makefile structure
Macros as targets

The first target in a Makefile cannot be a macro. If you need to use a macro in this
way then you should insert an ‘extra’ target.

For example:

 all: ${PROG}

 ${PROG}: myprog.o
 @echo ${PROG} rebuilt

Makefile structure

Makefiles contain normal ASCII text, and are of type 0xFE1 (Makefile). For
backwards compatibility they may also be used with text (0xFFF) file type, though
these cannot be adjusted automatically by Make.

A Makefile consists of a sequence of logical lines. A logical line may be continued
over several physical lines provided each but the last line ends with a \. For
example:

This is a comment line \
continued on the next physical line \

 and on the next, but not thereafter.

A comment is introduced by a hash character # and runs to the end of the logical
line. The active comment line:

Dynamic dependencies:

is interpreted by AMU as a marker for the start of dependencies to be kept up to
date during a make job (see Makefiles constructed by Make on page 227). All other
comment lines are ignored by AMU.

Otherwise there are four kinds of non-empty logical lines in a Makefile:

● dependency lines

● command lines

● macro definition lines

● rule and other special lines.

Dependency lines have the form:

space-separated-list-of-targets COLON space-separated-list-of-prerequisites
212

Makefile syntax
For example:

tool: o.tool $.gfx.o.jpeglib
o.d35 o.d36 o.d37: h.util

A dependency line cannot begin with white space. Spaces before the colon are
optional, but some white space must follow to distinguish a colon separating
targets and prerequisites from a colon as part of a RISC OS filename.

For example:

adfs::4.$.library.tool: o.tool ...

(Although a space after the colon is not required by UNIX’s make utility, omission
of it is rare in UNIX Makefiles).

A line with multiple targets is shorthand for several lines, each with one target and
the same right-hand side (and the same associated commands, if any). Multiple
dependency lines referring to the same target accumulate, though only one such
line may have commands associated with it (AMU would not know in what order to
execute the commands otherwise). For example:

tool: o.tool
tool: $.gfx.o.jpeglib

is exactly equivalent to the single line form given earlier. In general, the single line
form is easier for you to write whereas the multi-line form is more readily
generated by a program (for example, Make will generate a list of lines of the form
o.foo: h.thing, one for each #include thing.h in c.foo). Command
lines immediately follow a dependency line and begin with white space.

For maximum compatibility with UNIX Makefiles ensure that the first character of
every command line is a Tab. Otherwise one or more spaces will do. A semi-colon
may be used instead of a new line to introduce commands. This is often used when
there are no prerequisites and only a single command associated with a target. For
example:

clean:; wipe o.* ~cfq

Note that, in this case, no white space need follow the colon.

Macro definitions

Macros may be defined in one of the following ways:

macro-name = value
macro-name := value
macro-name ?= value
macro-name += value
213

Makefile structure
The macro name should comprise letters, numbers and the underscore symbol.
Macro names are case sensitive, so cc and CC refer to different macros. The macro
is defined to be value which is all of the text on the line following the equals sign.
The = can be surrounded with white space, or not, to taste.

See the section Macro priority on page 223 for more details on macros. The different
forms of definition are explained below.

Defining recursively expanded macros

Recursively expanded macros are defined as follows

macro-name = value

For example:

CC = cc
CFLAGS = -fah -c -I$.clib
LD = link
STUBS = C:o.stubs
JPEGLIB = $.gfx.o.jpeglib

Thereafter, wherever ${name} or $(name) is encountered, if name is the name of
a macro then the whole of ${name} is replaced by its definition. A reference to an
undefined macro simply vanishes. If the macro contains references to other macros
those references are expanded whenever this macro is substituted (i.e. the current
value of those macros is substituted when this macro is used).

An example which uses the above macro definitions, it is possible to express the
graphics converter tool Makefile as:

tool: o.tool $(JPEGLIB)
$(LD) -o tool ${LFLAGS} o.tool ${STUBS} ${JPEGLIB}

which expands to

tool: o.tool $.gfx.o.jpeglib
link -o tool o.tool C:o.stubs $.gfx.o.jpeglib

Note that ${LFLAGS} is unset so expands to nothing.
214

Makefile syntax
Simply extended macros

macro-name := value

This defines a simply extended macro where the value is macro expanded immediately.
The value of a simply expanded macro is scanned once and for all, expanding any
references to other macros, when the macro is defined. It does not contain any
references to other macros; it contains their values as of the time this macro was
defined. Therefore,

x := foo
y := $(x) bar
x := later

is equivalent to

y := foo bar
x := later

When a simply expanded variable is referenced, its value is substituted verbatim,
so unlike normal macros, forward references are not allowed.

Conditional macro assignment

macro-name ?= value

This does conditional assignment – it defines a recursively expanded macro if the
macro is not yet defined. Note that a macro may be defined to be empty in which
case this conditional assignment will have no effect.

Adding to a macro definition

macro-name += value

This adds value to the end of the current macro definition. Whether the value is
expanded before being appended depends on whether the macro being altered is a
simply expanded or recursively expanded macro. If the macro was previously
undefined it is defined as a recursively expanded macro.

By using macros intelligently, you can minimise the effort needed to move
Makefiles from computer to computer; for example, dealing with varying locations
for prerequisites, or centralising what would otherwise be distributed through
many lines of text. It is obviously much easier to add -g to a CFLAGS= line to make
a debuggable version of the compiler than it is to add -g to 28 separate cc
commands. Similarly, using $(CC) and CC=cc, rather than just cc, makes it very
easy to use a different version of cc; just change the definition of the macro. Whilst
this may not seem very useful in a small Makefile, it is common practice when
describing larger systems such as the C compiler. Macros are used extensively in
the Shared Makefiles provided in the AcornC/C++.Makefiles directory.
215

Advanced features
Advanced features

There are several advanced features in AMU 5.27 which were not in AMU 5.05
released with the original Acorn C/C++ development environment. These include
substitutions, functions, directives and new rules for macro priority, as explained
below. The new macro priority rules are the most likely source of problems when
using existing Makefiles, and backwards compatibility options have been provided,
as explained in Macro priority on page 223.

Substitutions

Basic substitutions are supported:

${VAR:search=replace}

search and replace are simple strings, and the construct represents the value
of the VAR macro with all occurrences of 'search' replaced by 'replace'. The more
advanced GNU % substitutions are also supported.

Functions

Several functions are supported within Makefiles, using the same syntax as GNU
make. These functions are particularly useful for processing filenames and lists of
filenames. Where functions operate on lists each element in the list should be
separated by one or more spaces. Multiple spaces are always treated the same as a
single space. Where functions return a list, the elements are separated by a single
space.

The functions supported are listed below:

$(addsuffix suffix, list...)

This function adds the supplied suffix to each element in list to form a new
list with the same number of elements. For example:

$(addsuffix .c,main display)

produces the result `main.c display.c'.

$(addprefix prefix,list...)

This function prepends the supplied prefix to each element in list to form a
new list with the same number of elements. For example:

$(addprefix c.,foo bar)

produces the result ‘c.foo c.bar’.
216

Makefile syntax
$(dir names...)

This function returns a list containing the directory-part of each filename in
names. The directory-part of the file name is everything up to and including the
last dot in it (note that RISC OS uses a dot as the directory separator). For example,

$(dir ADFS::$.src.main/c)

produces the result ‘ADFS::$.src.’.

$(error text...)

Generates a fatal error where the message is text. Note that the error is generated
when this function is evaluated. So, if you put it inside a command script or assign
it to a recursive variable then it won't be evaluated until later. The text is expanded
before the error is generated. For example,

ifdef ERRMSG
$(error error is $(ERRMSG))
endif

$(filter pattern...,list)

Returns all of the items in text that match any of the patterns in the pattern
list. The patterns are specified as in the patsubst function below. The filter
function can be used to separate out different types of strings (such as file names)
in a variable. For example:

sources := html.c editor.c render.s ucslib.h
target: $(sources)

cc $(filter %.c,$(sources)) -o target

This means that target depends on all of the files in sources but only the c files
should be compiled by cc.

$(filter-out pattern...,list)

This is the opposite of the filter function. . It returns all the items in list that do
not match any of the patterns in the pattern list.

For example:

$(filter-out .h, main.c adfs.h usb.h)

will return ‘main.c’.

$(findstring find,in)

Searches in for an occurrence of find. If it occurs, the value is find; otherwise, the
value is empty. You can use this function in a conditional to test for the presence of
a specific substring in a given string. Thus, the two examples,
217

Advanced features
$(findstring a,a b c)

$(findstring a,b c)

produce the values ‘a’ and ‘’ (the empty string), respectively. See section
Conditionals that Test Flags, for a practical application of findstring.

$(firstword list...)

Returns the first word in the list. For example,

$(firstword Now is the time)

produces the result now. See the word function to extract subsequent word.

$(if condition,then-part[,else-part])

The if function returns then-part if condition is true, or else-part
otherwise. The condition is regarded as true if it expands to a non-empty string
(leading and trailing spaces are stripped before it is evaluated). Note that if
condition expands to one or more spaces it will be regarded as being true – use the
strip function if this is likely to cause a problem.

The else-part may be omitted in which case the function returns an empty
string if condition is false.

$(join list1, list2)

Concatenates the two arguments by concatenating the corresponding word from
each list to form the result, i.e. the two first words (one from each argument) form
the first word of the result, the two second words form the second word of the
result. If one list has more words that the other, the extra words are copied into the
result.

For example:

$(join a b,.c .o)

returns a.c b.o. The join function can be used to merge the results of the dir
and notdir functions, to produce the original list of files which was given to
those two functions.

$(notdir names...)

Extracts the leafname of each filename in names, that is everything after the last
dot in each filename. If the file name contains no directory name, then the
leafname is returned unmodified. A file name that ends with a dot becomes an
empty string which can cause problems as the resulting list may not have the same
number of elements as names.
218

Makefile syntax
For example:

$(notdir $(dir ADFS::$.src.main/c))

produces the result ‘main/c'.

$(origin variable)

The origin function returns a string describing the origin of the variable – it does
not look at the value of the variable. The variable should not normally have a $
prefix or parentheses as the function is examining the status of the variable itself,
not its value.

The result is a string, as follows:

$(patsubst pattern, replacement, text)

Returns the text string after replacing any words of pattern with
replacement. Words in text are separated by one or more spaces.

Wildcards are allowed in pattern as follows:

Multiple spaces between words in text are replaced with a single space and
leading and trailing space is discarded.

For example,

$(patsubst %.c, %.o, foo.c bar.c)

undefined variable has not been defined

default variable has a default definition

environment variable was defined as an environment variable and -e
option has not been used

environment
override

variable was defined as an environment variable and the -e
option is turned on (see section Summary of Options)

file variable was defined in a makefile

command line variable was defined on the command line

override variable was defined with an override directive in a makefile
(see section Override on page 221)

automatic variable is an automatic variable defined for the execution of
the commands for each rule ($@, $*, $< or $?).

% matches any non-space characters within a word. If %
appears in the replacement string it is replaced by the
text that matched % in pattern.

\% Matches a percent character: %

\\ Matches a backslash character if the next character is %
219

Advanced features
produces the value ‘foo.o bar.o’.

A short-cut substitution operator may be used to achieve the same effect as follows:

$(var:pattern=replacement)

This is equivalent to:

$(patsubst pattern, replacement, $(var))

For example, to obtain the list of source files corresponding to a list of object files:

objects = foo.o bar.o baz.o
$(objects:.o=.c)

$(sort list)

Sorts the words of list in lexical order, removing duplicate words. The output is a
list of words separated by single spaces. For example:

$(sort one two three)

will expand to ‘one three two’.

$(subst from, to, text)

Returns the string text with each occurrence of from replaced with to. For
example,

$(subst /,.,/pskirrow/src/main)

returns ‘pskirrow.src.main’.

$(strip string)

Replaces multiple spaces in string with a single space and removes all leading and
trailing spaces. This can be useful when using conditionals which will not equate
spaces as being the same as a null string.

$(warning text...)

This function generates a warning but allows AMU to continue processing the
Makefile. The warning text is treated in the same was as for the error function
above. This function returns an empty string.

$(wildcard filename)

This function expands to a space-separated list of all files that exist which match
any of the space-separated wildcarded specs given in the function argument. The
names returned are in native RISC OS format, for example searching for *.c would
return c.hello, this is to ensure maximum compatibility with the GNU make
function of the same name.
220

Makefile syntax
$(word n,text)

Returns the nth word that occurs in text, with n=1 representing the first word. If n
is bigger than the number of words in text, the value is empty. For example,

$(word 3, RISC OS Open Limited)

returns ’Open‘.

$(wordlist s,e,text)

This function returns the sub-list of words in text starting with word s and ending
with word e (inclusive) counting the first word as word 1. If the range exceeds the
words in the list, then the missing words are regarded as empty. If s is larger than
e or greater than the number of words in the list then nothing is returned.

For example,

$(wordlist 2, 3, one two three)

returns ’two three’.

$(words text)

Returns the number of words in text. For example, to extract the last word from
text:

$(word $(words text),text)

The implementation of wildcard does not support wildcards but it can be used to
test for existence of a specific file or list of files though.

Directives

Directives are special keywords which are placed at the start of the line. They may
optionally be proceeded by a ‘.’ The support directives are listed below.

Override

Macro assignment override is supported with the override directive. This allows
macro definitions made on the command-line, which are otherwise immutable, to
be overridden (also see Macros and Macro Priority sections below).

For example:

override macro = value

defines macro to be a recursively expanded macro set to value.

override macro := value

defines macro to be a simply expanded macro set to value.
221

Advanced features
override variable += text

Appends text to the end of the current definition of macro.

Include

If a line of the Makefile starts with the word include (or .include), then the
parameters following it are taken to be filenames whose contents should be
logically inserted in the Makefile at that point (i.e.. just like the C preprocessor's
#include). This means that common makefile fragments can be abstracted out of
individual component makefiles, thus simplifying and standardising the build
structure.

Preceding include/.include with a hyphen suppresses any file not found
errors from arguments to the include directive.

For example:

include makebase

Conditional Directives

There are six conditional directives to control which parts of the makefile are
parsed:

ifeq ifneq ifdef ifndef
else endif

The last two must appear on lines on their own. The first four introduce the
conditional section of the makefile. Conditionals are evaluated as the makefile is
parsed, not when the rules are interpreted, so you can use it to alter what AMU
sees in the makefile. If the condition evaluates to a non-empty value then the text
after the conditional is used, otherwise the text after the matching else directive is
used (if it exists). Beware of values containing just spaces which are not regarded
as being empty.

Conditionals may be nested to 8 levels in AMU (other versions of make may allow
more or fewer levels).

The ifeq and ifneq directives take two parameters. They make take several
styles of parameter, but they are all equivalent:

ifeq (param1,param2)
ifeq "param1" "param2"
ifeq 'param1' 'param2'
ifeq 'param1' "param2"
222

Makefile syntax
For example:

ifeq (${MAKECMDGOALS},clean)
this text is inserted if the macro expands to "clean"

else
this text is inserted if the macro doesn’t match

endif

The else clause is optional.

ifeq compares the two parameters for equality. ifneq compares the two
parameters for inequality. ifdef and ifndef take a single parameters which is
the name of a macro. ifdef returns true if the specified name names a macro with
a non-empty value, and false otherwise. ifndef returns the opposite.

The fact than a macro defined with an empty value is treated as undefined by this
directive can be the cause of confusion. If you want to distinguish between
undefined macros and those with an empty value, you can instead use:

ifeq ($(origin macroname),undefined)
then the macro was undefined

endif

Macro priority

Macro definitions do not always take effect in this version of AMU. The macro
priority system mirrors that used by GNU make. Each macro has an origin (which is
returned by the origin function) as does each attempted definition. If the existing
definition is higher priority, the definition does not succeed. This can lead to
odd-looking, but correct, behaviour. By default, the rank (from highest to lowest
priority) is:

override
command line
environment override
file
environment
automatic
default
undefined

An important side-effect of this is macros defined on the command-line now
outrank those defined in the makefile. This can cause unexpected behavioural
changes to the unwary. If the Makefile really wants to override the command-line
definition, it must use the override directive. Note that += is affected by this
protection too - you cannot add to a command line macro unless you use the
override directive.
223

Advanced features
To aid compatibility with makefiles written for earlier versions of AMU, a new
command-line option -E is supported. This changes the ranking system to more
closely mirror that employed by AMU 5.06. However, using this option does not
prevent the environment being searched for undefined macros. This alternative
rank is:

override
file
command line
automatic
default
environment override
environment
undefined.

Aside: There is a peculiar behaviour of GNU make which is mirrored by AMU with
regard to environment override macros. If -e is in effect (environment overrides
Makefile), then the origin of a macro that has come from the environment will be
just “environment” until another definition is attempted in the makefile. At that
point, the macro's origin is boosted up to “environment override”, but not before.
This is not a bug.

File naming

To help you move Windows and UNIX Makefiles to RISC OS, or to develop
Makefiles under RISC OS for export to Windows or UNIX, both AMU and the C
compiler accept three styles of file naming:

RISC OS native: $.my.prog.c.main ^.include.h.defs

UNIX-like: /my/prog/main.c ../include/defs.h

Windows-like: \my\prog\main.c ..\include\defs.h

(All three of these examples refer to the same two RISC OS files.)

The linker offers more limited support; in essence, it recognises thing.o and
o.thing as referring to the same RISC OS file (o.thing). In practice, object files
almost always live locally (that’s the only place the RISC OS and UNIX C compilers
will put one) so this support is fairly complete.

AMU will even accept a mixture of naming styles, though this practice should be
discouraged.

The mapping between different naming styles cannot be complete (consider the
UNIX analogue of adfs::0.$.Library or net#1.251:src.amu). However, it
is usually sufficient to take much of the hard work out of moving reasonably
portable Makefiles.
224

Makefile syntax
VPATH

Usually, AMU looks for files relative to the work directory or in places implicit in the
filename. The example given earlier contains the line:

tool: o.tool $.gfx.o.jpeglib

which refers to:

 @.o.tool (in @.o) and $.gfx.o.jpeglib (in $.gfx.o)

Sometimes, particularly when dealing with multiple versions of large systems, it is
convenient to have a complete set of object files locally, a few sources locally, but
most sources in a central place shared between versions. For example, we can
build a ‘professional’ version of our graphics converter tool this way which handles
several different graphics formats. If the macro VPATH is defined, then AMU will
look in the list of places defined in it for any files it can’t find in the places implicit
in their names. For example, we might have sources in somewhere.sprite,
somewhere.gif, somewhere.png and put the compiler Makefile in
somewhere.tool. It might contain the following VPATH definition:

VPATH=^.sprite ^.gif ^.png # note that UNIX VPATHs
separate path elements
with colons, not spaces

and then dependency lines like:

o.native: c.native # ^.sprite.c.native, via VPATH
 cc $(CFLAGS) -o o.native $?

o.animate: c.animate # ^.gif.c.animate, via VPATH
 cc $(CFLAGS) -o o.animate $?

Rule patterns, .SUFFIXES, $@, $*, $< and $?

All the examples given so far have been written out longhand, with explicit rules for
making targets. In fact, AMU can make inferences if you supply the appropriate rule
patterns. These are specified using special target names consisting of the
concatenation of two suffixes from the pseudo-dependency .SUFFIXES. This
sounds very complicated, but is actually quite simple. For example:

.SUFFIXES: .o .c
tool: o.tool ...
.c.o:; $(CC) $(CFLAGS) -o $@ c.$*

(Note the order here: .c.o makes a .o-like thing from a .c-like thing).
225

Advanced features
The rule pattern .c.o describes how to make .o-like things from .c-like things. If,
as in the above fragment, there is no explicit entry describing how to make a
.o-like thing (o.amu, in the above example) AMU will apply the first rule it has for
making .o-like things. Here, order is determined by order in the .SUFFIXES
pseudo-dependency. For example, suppose .SUFFIXES were defined as
.o .c .f and that there were two rules, .c.o:... and .f.o:... Then AMU
would choose the .c.o rule because .c precedes .f in the .SUFFIXES
dependency. In applying the .c.o rule, AMU infers a dependence on the
corresponding .c-like thing - here c.amu. So, in effect, it infers:

o.tool: c.tool
$(CC) $(CFLAGS) -o o.tool c.tool

Note that, in the commands, $@ is replaced by the name of the target and $* by
the name of the target with the ‘extension’ deleted from it. In a similar fashion, $<
refers to the list of inferred prerequisites. So the above example could be rewritten
using the rule:

.c.o:; $(CC) $(CFLAGS) -o $@ $<

However, if a VPATH were being used, this second form is obligatory. Consider, for
example, the fragment:

VPATH=^.sprite ^.gif ^.png
toolpro: o.animate
.c.o:; $(CC) $(CFLAGS) -o $@ $<

There is no explicit rule for making o.animate, so AMU will apply the rule pattern
.c.o:?. This might expand to:

o.animate: ^.gif.c.animate
$(CC) $(CFLAGS) -o o.animate ^.gif.c.animate

which has a much more useful effect than:

$(CC) $(CFLAGS) -o o.animate c.animate

Finally, $? can be used in any command to stand for the list of prerequisites with
respect to which the target is out of date (which may be only some of the
prerequisites).

Use of ::

If you use :: to separate targets from prerequisites, rather than :, the right-hand
sides of dependencies which refer to the same targets are not merged.
Furthermore, each such dependency can have separate commands associated with
it. Consider, for example:
226

Makefile syntax
o.t1:: c.t1 h.t1
cc -g -c c.t1 # executed if o.t1 is out of

date wrt c.t1 or h.t1
o.t1:: c.t1 h.t2

cc -c c.t1 # executed if o.t1 is out of
date wrt c.t1 or h.t2

These features are used extensively by Make in the construction of Makefiles.

Prefix$Dir

The DDEUtils module provides an environment variable Prefix$Dir set to the
work directory. This is provided to allow you to execute binaries placed in the work
directory.

Makefiles constructed by Make

A Makefile constructed by Make, i.e. used to maintain a project, is a file of type
0xFE1 (Makefile). This text is arranged into a number of sections which are
separated by active comments.

When maintaining a project the meta-symbol @ is used to stand for the pathname
of the work directory. This overcomes the problem of a current directory not being
appropriate under the RISC OS desktop. If the absolute filename of a Makefile is:

adfs::4.$.any.thing.makefile

then all filenames for the project can use @ to replace adfs::4.$.any.thing.

For example:

adfs::4.$.any.thing.c.foo

becomes denoted by

@.c.foo

AMU is invoked with the -desktop flag to indicate that @ should be expanded.

Tools like cc and objasm which must produce dependency information are invoked
with a flag -depend !Depend. AMU's parser for !Depend files generated by
tools it invokes is much stricter than that for makefiles in general. Only one target
is permitted per line (though multiple dependencies may be listed) and no
whitespace is allowed between the target name and the following ':'.
227

Miscellaneous features
Below, we describe each of the Makefile sections, beginning with their
corresponding active comments:

Miscellaneous features

The special pseudo-target .SILENT tells AMU not to echo commands to be
executed to your screen. Its effect is as if you used the Make or AMU option Silent.

The special pseudo-target .IGNORE tells AMU to ignore the return code from the
commands it executes. Its effect is as if you used the Make or AMU option Ignore
return codes.

A command line in a Makefile, the first non-white-space character of which is @, is
locally silent; just that command is not echoed. This is only rarely useful.

A command line, the first non-white-space character of which is - has its return
code ignored when it is executed. This is extremely useful in Makefiles which use
commands such as diff which cannot set the return code conventionally.

The special macro MFLAGS is given the value of the command line arguments
passed to AMU. This is most useful when a Makefile itself contains AMU
commands (for example, when a system consists of a collection of subsystems,

Project:
project_name

This gives a name to be used for the project in the
Open submenu.

Toolflags: This section has a set of default flags for each of the
tools which have registered themselves with !Make,
for automatic inclusion in a Makefile. Each rule would
be of the type:

toolFLAGS =

Final targets: This section contains the rules for making the final
targets of the project. For example:
!RunImage: link $(linkflags) -o !RunImage -via objects

User-editable
dependencies:

This section is left untouched by !Make, and can freely
be edited by the user using a text editor.

Static
dependencies:

This section contains rules for making an object file
from its corresponding source. It does not refer to
include files and the like (described below in the
section Dynamic dependencies).

Dynamic
dependencies:

This section contains the rules which are created by
!Make by running the relevant tool on a source file to
ascertain its dependencies (e.g. cc -depend).
228

Makefile syntax
each described by its own Makefile). MFLAGS allows the same command line
arguments to be passed to every invocation of AMU, even the recursive ones. For
example, you might invoke AMU like this:

* amu -k LIB=$.experiment.new.lib.grafix

and the Makefile might contain entries like:

subsys_1:$(COMMON) $(HDRS1) ...
dir subsys1
amu $(MFLAGS)
back
229

Miscellaneous features
230

Appendix C: FrontEnd protocols
Star Commands

Two star commands are supported:

*FrontEnd_Start -app <application name>
 -desc <description_filename>

*FrontEnd_SetUp -app <application_name>
-desc <description_filename>
-task <task-id_of_caller>
-handle <app-specific_handle>
-toolflags <filename>

The application specific handle can be used by the caller to identify return
messages, if many *FrontEnd_SetUp commands have been made.

EBNF Grammar of Description Format

The following is an EBNF grammar for an application description:

Note: Blank lines and characters following # (up to newline) are ignored.

APPLICATION ::= TOOLDETAILS
[METAOPTIONS]
[FILEOUTPUT]
[DBOX]
[MENU]
[DESELECTIONS]
[EXCLUSIONS]
[MAKE_EXCLUSIONS]
[ORDER]
[MAKE_ORDER]
<EOF>

 TOOLDETAILS ::= tool_details_start
name <string> ";"
[command_is <string>;]

 version <number_and_optional_date>
";"
[filetype &<3digit_hexnumber> ";"]
231

EBNF Grammar of Description Format
[wimpslot <integer>k ";"]
[has_extended_cmdline ";"]

tool_details_end

 METAOPTIONS ::= metaoptions_start
[has_auto_run [on] ";"]
[has_auto_save [on]

{"^."}[<string>][leafname]
[<string>] from icn <integer> ";"]
[has_text_window ";"]
[has_summary_window ";"]
[display_dft_is text|summary ";"]

metaoptions_end

 FILEOUTPUT ::= fileoutput_start
[output_option_is <string> ";"]
[output_dft_string <string> ";"]
[output_dft_is (produces_output|
produces_no_output) ";"]

fileoutput_end

 DBOX ::= dbox_start
 ICONS

[ICONDEFAULTS]
[IMPORTS]

dbox_end

 MENU ::= menu_start
MENULIST
[MENUDEFAULTS]

menu_end

#--

 MENULIST ::= { MENUENTRY }

 MENUENTRY ::= <string> maps_to <string>
[sub_menu <string> <integer>

[prefix_by <string>]]
[produces_no_output|
produces_output]
[not_saved] ";"

 MENUDEFAULTS ::= defaults
menu <integer> on | off [sub_menu

<string>
| <integer>
232

FrontEnd protocols
{ "," menu <integer> on | off [sub_menu
<string>
| <integer>

}
";"
[make_defaults
menu <integer> on | off [sub_menu

<string>
| <integer>

{
","
menu <integer> on | off [sub_menu
<string>

| <integer>
}
";"
]

#--

 ICONLIST ::= icn <integer> { "," icn <integer> }

 ENTRYLIST ::= menu <integer> { "," menu <integer> }

 ICON_ENTRYLIS::= menu|icn <integer> { "," menu|icn
<integer> }

#--

 ICONS ::= icons_start
ICONDEFLIST

icons_end

 ICONDEFLIST ::= { ICONDEF }

 ICONDEF ::= icn <integer> (maps_to ([<string>]
[CONVERSION])

[prefix_by <string>]
[followed_by [spaces] OPTLIST]
[separator_is <string>]
[produces_no_output
|produces_output]
[not_saved])
| (increases|decreases icn

<integer>
[by] <integer> [max <integer>]

 [min <integer>])
233

EBNF Grammar of Description Format
| inserts <string> ";"
| extends from icn <integer>

to icn <integer> ";"

 OPTLIST ::= OPTENTRY { "," OPTENTRY }

 OPTENTRY ::= icn <integer>

 CONVERSION ::= string|number

 ICONDEFAULTS ::= defaults
icn <integer> on | off | <string>
| <integer>
{ "," icn <integer> on | off
<string> | <integer>
}
";"

[make_defaults
icn <integer> on | off | <string>
| <integer>
{ "," icn <integer> on | off
<string> | <integer> }
";"
]

#--

 DESELECTIONS ::= deselections_start
DESELECTIONLIST

deselections_end

 DESELECTIONLIST::={ DESELECT }

 DESELECT ::= icn <integer> deselects
ICON_ENTRYLIST ";"
| menu <integer> deselects
ICON_ENTRYLIST ";"

#--

 EXCLUSIONS ::= exclusions_start
EXCLUSIONLIST

exclusions_end

 EXCLUSIONLIST::= { EXCLUDE }
234

FrontEnd protocols
 EXCLUDE ::= icn <integer> excludes
ICON_ENTRYLIST ";"
| menu <integer> excludes
ICON_ENTRYLIST ";"

#--

 MAKE_EXLUSIONS::=make_excludes ICON_ENTRYLIST ";"

 ORDER ::= order_is
(menu|icn <integer>) | <string> |
output
{ "," (menu|icn <integer>) |
<string> | output}
";"

 MAKE_ORDER ::= make_order_is
(menu|icn <integer>) | <string> |
output
{ "," (menu|icn <integer>) |
<string> | output}
";"

#--

 IMPORTS ::= imports_start
[wild_card_is <string> ";"]
IMPORTLIST

imports_end

 IMPORTLIST ::= { IMPORT }

 IMPORT ::= drag_to
(icn <integer>|any|iconbar)
inserts
ICONLIST
[separator_is <string>] ";"
235

WIMP Message returned after a *FrontEnd_SetUp
WIMP Message returned after a *FrontEnd_SetUp

When an application like Make does a *FrontEnd_SetUp command, the FrontEnd
module replies to that application when the user has chosen his options with a
WIMP message of the format:

 Byte offset Contents

 +16 reason code 0x00081400

 +20 handle which was passed to *FrontEnd_SetUp

 +24 to +36 application name

 +36 ... null-terminated command-line options
236

Appendix D: DDEUtils

he DDEUtils module performs three functions. These functions have been

combined in one module for convenience:

● Filename prefixing. This allows a unique current working directory to be set
for each task running under RISC OS.

● Long command lines. A mechanism for passing long command lines (> 255
characters) between programs (e.g. between AMU and Link).

● Throwback. Throwback allows a language processor (e.g. CC or ObjAsm) to
inform an editor that an error has occurred while processing a source file. The
editor can then display the source file at the location of the error.

These functions are described individually in the rest of the chapter.

Filename prefixing SWIs

DDEUtils_Prefix (0x42580)

Entry: R0 = Pointer to 0 terminated directory name, or R0 = 0

Exit: All registers preserved

Error: None

Use: This sets a directory name to be prefixed to all relative filenames
used by this task. If R0 = 0 this removes any previously set prefix. If
you use this SWI within a program to set a directory prefix you
should call it again with R0 = 0 immediately before exiting your
program.

DDEUtils_ReadPrefix (0x4258A)

Entry: R0 = Task handle, or R0 = 0 for current task

Exit: R0 = Pointer to control terminated directory name, or 0 if none.

Error: None

Use: This returns the directory name that will be prefixed to all relative
filenames used by the task whose handle is given in R0, or by the
current task if R0 = 0. If no prefix is set for the task 0 is returned.

T

237

Filename prefixing *Commands
Filename prefixing *Commands

*Prefix [directory]

This sets the specified directory name to be prefixed to all relative filenames used
by this task. *Prefix with no arguments removes any previously set prefix.

The system variable <Prefix$Dir> is set to the prefix used for the currently
executing task. This can be set by you, and this will have the same effect as
*Prefix.

Long command line SWIs

These SWIs are used to pass long command lines between programs. Typically they
will be called by library veneers. For example, the C run-time library initialisation
calls DDEUtils_GetCLSize and DDEUtils_GetCL to fetch any long
command lines set up by a calling program and calls DDEUtils_SetCLSize and
DDEUtils_SetCL in the system library call.

DDEUtils_SetCLSize (0x42581)

Entry: R0 = Length of command line buffer required

Exit: R0 destroyed

Error: None

Use: This SWI should be called by a program when it has a long
command line which it wishes to pass to another program. The SWI
should be called with the length of the command line in R0. A buffer
of suitable size is allocated in the RMA.

DDEUtils_SetCL (0x42582)

Entry: R0 = Pointer to zero terminated command line tail

Exit: All registers preserved

Error: Possible errors are

CLI buffer not set

This error is generated if the program has not previously called
DDEUtils_SetCLSize to establish the size of the command line.

 Use: This should be called after calling DDEUtils_SetCLSize to set
the size of the command line buffer. R0 contains a pointer to the
command tail (i.e. the command line without the name of the
program to be run).
238

DDEUtils
DDEUtils_GetCLSize (0x42583)

Entry: –

Exit: R0 = Size of command line

Error: None

Use: This is called by a program which may have been run with a long
command line. The size of the command line is returned in R0. 0 is
returned if no command line has been set.

DDEUtils_GetCl (0x42584)

Entry: R0 = Pointer to buffer to receive command line

Exit: All registers preserved

Error: None

 Use: This SWI is called to fetch the command line. The command line is
copied into the buffer pointed to by R0.

DDEUtils_FlushCL (0x4258B)

Entry: –

Exit: All registers preserved

Error: None

 Use: This is called to clear the command line buffer and free the
allocated memory.

Throwback SWIs

DDEUtils_ThrowbackRegister (0x42585)

Entry: R0 = task handle of caller

Exit: All registers preserved

Error: Possible errors are:

Another task is registered for throwback
Throwback not available outside the desktop

Use: This registers a task which is capable of dealing with throwback
messages, with the throwback module. The task handle will be used
in passing Wimp messages to the caller, when they are generated by
an application.
239

Throwback SWIs
DDEUtils_ThrowbackUnRegister (0x42586)

Entry: R0 = task handle of caller

Exit: All registers preserved

Error: Possible errors are:

Task not registered for throwback
Throwback not available outside the desktop

Use: This call should be made when the Wimp task which registered itself
for throwback is about to exit.

DDEUtils_ThrowbackStart (0x42587)

Entry: –

Exit: All registers preserved

Error: Possible errors are:

No task registered for throwback
Throwback not available outside the desktop

Use: When a non-desktop tool detects errors in the source(s) it is
processing, and throwback is enabled, the tool should make this
SWI to start a throwback session.

DDEUtils_ThrowbackSend (0x42588)

Entry: R0 = reason code
R2-R5 = depends on reason code (see below)

If R0 = 0 (Throwback_ReasonProcessing)
R2 = pointer to nul-terminated full pathname of file being

processed

If R0 = 1 (Throwback_ReasonErrorDetails)
R2 = pointer to nul-terminated full pathname of file being

processed
R3 = line number of error
R4 = severity of error

= 0 for warning
= 1 for error
= 2 for serious error

R5 = pointer to nul-terminated description of error

If R0 = 2 (Throwback_ReasonInfoDetails)
R2 = pointer to nul-terminated full pathname of file being

processed
240

DDEUtils
R3 = line number to which ‘informational’ message refers
R4 = must be 0
R5 = pointer to nul-terminated ‘informational’ message

Exit: R0-R4 preserved

Error: Possible errors are:

No task registered for throwback
Throwback not available outside the desktop

Use: This SWI should be called with reason

 Throwback_ReasonProcessing

once, when the first error in processing a file was found. Then it
should be called once for each error found, with the reason

Throwback_ReasonErrorDetails

or for each informational line that needs displaying with the reason:

Throwback_ReasonInfoDetails

DDEUtils_ThrowbackEnd (0x42589)

Exit: All registers preserved

Error: Possible errors are:

No task registered for throwback
Throwback not available outside the desktop

Throwback WIMP messages

These messages are sent by the DDEUtils module to an editor that has registered
itself for throwback using the SWI DDEUtils_ThrowbackRegister. You only
need to know about them if you want to write your own editor.

The translator then passes messages giving full information on each error, or each
‘informational’ message, to the editor.

Byte Offset Contents

+16 DDEUtils_ThrowbackStart (0x42580)
241

Throwback WIMP messages
A complete series of messages sent by the translator to the editor is described by
the grammar below. Items in <..> are individual Wimp messages, identified by their
reason code.

ErrorDialogue ::= <DDEUtils_ThrowbackStart>
ErrorsWhileProcessing
{ErrorsWhileProcessing}
<DDEUtils_ThrowbackEnd>

ErrorsWhileProcessing ::= <DDEUtils_ProcessingFile>
Error Found In {Error Found
In}

ErrorFoundIn ::= <DDEUtils_ErrorIn>
<DDEUtils_ErrorDetails>

InfoDialogue ::= <DDEUtils_ThrowbackStart>
InfoDetails{InfoDetails}
<DDEUtils_ThrowbackEnd>

InfoDetails ::= <DDEUtils_InfoforFile>
<DDEUtils_InfoDetails>
242

DDEUtils
The format of such Wimp messages is as follows:

Byte Offset Contents

+16 DDEUtils_ProcessingFile (0x42581)

+20 Nul-terminated filename

Byte Offset Contents

+16 DDEUtils_ErrorsIn (0x42582)

+20 Nul-terminated filename

Byte Offset Contents

+16 DDEUtils_ErrorDetails (0x42583)

+20 Line number

+28 Severity
= 0 for warning
= 1 for error
= 2 for serious error

+32 Nul-terminated description

Byte Offset Contents

+16 DDEUtils_ThrowbackEnd (0x42584)

Byte Offset Contents

+16 DDEUtils_InfoforFile (0x42585)

+20 Nul-terminated filename

Byte Offset Contents

+16 DDEUtils_InfoDetails (0x42586)

+20 Line number

+28 must be 0

+32 Nul-terminated ‘informational’ message
243

Throwback WIMP messages
244

Appendix E: SrcEdit file formats
Language File Format

language_name

searchpath is a comma-separated list of full pathnames for default search
path when loading from a selection. Note that each item in this
list should either be a path variable (e.g. C:), or be terminated by
a dot (this line can be left blank, though putting @. on the line
would be preferable)

 helppath is the full pathname of language help file (this line can be left
blank, though putting @. on the line would be preferable)

Help File Format

 %<keyword>

 <line 1 of help text>

 <line 2 of help text>

 <line 3 of help text>

 <line 4 of help text>

 etc

 There is no limit on the number of help lines for a given keyword.
245

246

Appendix F: Code file formats

his appendix defines three file formats used by the Desktop tools to store

processed code and the format of debugging data used by DDT:

● AOF – ARM Object Format

● ALF – Acorn Library Format

● AIF – ARM Image Format

● ASD – ARM Symbolic Debugging Format.

Desktop tools language processors such as CC and ObjAsm generate processed
code output as AOF files. An ALF file is a collection of AOF files constructed from a
set of AOF files by the LibFile tool. The Link tool accepts a set of AOF and ALF files
as input, and by default produces an executable program file as output in AIF.

Terminology

Throughout this appendix the terms byte, half word, word, and string are used to mean
the following:

Byte: 8 bits, considered unsigned unless otherwise stated, usually used to store flag
bits or characters.

Half word:16 bits, or 2 bytes, usually unsigned.The address of a half word (i.e. of its
least significant byte) must be divisible by 2.

Word: 32 bits, or 4 bytes, usually used to store a non-negative value. The address of
a word (i.e. of its least significant byte) must be divisible by 4.

String: A sequence of bytes terminated by a NUL (0x00) byte. The NUL is part of the
string but is not counted in the string’s length. Strings may be aligned on any byte
boundary.

Note: a word consists of 32 bits, 4-byte aligned.

Byte Sex or Endian-ness

There are two sorts of AOF or ALF: little-endian and big-endian.

In little-endian AOF or ALF, the least significant byte of a word or half-word has the
lowest address of any byte in the (half-)word.

T

247

Alignment
In big-endian AOF or ALF, the most significant byte of a (half-)word has the lowest
address.

For data in a file, address means ‘offset from the start of the file’.

There is no guarantee that the endian-ness of an AOF or ALF file will be the same
as the endian-ness of the system used to process it (the endian-ness of the file is
always the same as the endian-ness of the target ARM system).

The two sorts of AOF or ALF cannot, be mixed (the target system cannot have
mixed endian-ness: it must have one or the other). Thus the ARM linker will accept
inputs of either sex and produce an output of the same sex, but will reject inputs of
mixed endian-ness.

Alignment

Strings and bytes may be aligned on any byte boundary.

AOF and ALF fields defined in this appendix make no use of half-words and align
words on 4-byte boundaries.

Within the contents of an AOF or ALF file the alignment of words and half-words is
defined by the use to which AOF or ALF is being put.

For all current ARM-based systems, words are aligned on 4-byte boundaries and
half-words on 2-byte boundaries.

Undefined fields

Fields not explicitly defined by this appendix are implicitly reserved. It is required
that all such fields be zeroed. Meaning may be ascribed to such fields at any time,
but this will usually be done in a manner which gives no new meaning to zeroes.
248

Code file formats
AOF
ARM object format files are output by language processors such as CC and
ObjAsm.

Chunk file format

A chunk is accessed via a header at the start of the file. The header contains the
number, size, location and identity of each chunk in the file. The size of the header
may vary between different chunk files but is fixed for each file. Not all entries in a
header need be used, thus limited expansion of the number of chunks is permitted
without a wholesale copy. A chunk file can be copied without knowledge of the
contents of the individual chunks.

Graphically, the layout of a chunk file is as follows:

ChunkFileId marks the file as a chunk file. Its value is 0xC3CBC6C5. The
endian-ness of the chunk file can be deduced from this value (if, when read as a
word, it appears to be 0xC5C6CBC3 then each word value must be byte-reversed
before use).

ChunkFileId

MaxChunks

NumChunks

entry1

entry2

entry "MaxChunks"

chunk 1

chunk "NumChunks"

Fixed part of header

4 words per entry

End of header (3 + 4*MaxChunks) words

Start of data chunks

occupies 3 words and
describes what follows
249

Object file format
The MaxChunks field defines the number of the entries in the header, fixed when
the file is created. The NumChunks field defines how many chunks are currently
used in the file, which can vary from 0 to MaxChunks. The value of NumChunks is
redundant as it can be found by scanning the entries.

Each entry in the header comprises four words in the following order:

The chunkId field provides a conventional way of identifying what type of data a
chunk contains. It is split into two parts. The first four characters contain a unique
name allocated by a central authority (ARM). The remaining four characters can be
used to identify component chunks within this domain. The 8 characters are stored
in ascending address order, as if they formed part of a NUL-terminated string
(which they do not), independently of endian-ness.

For AOF files, the first part of each chunk’s name is OBJ_; the second components
are defined later in this section.

Object file format

Each piece of an object file is stored in a separate, identifiable, chunk. AOF defines
five chunks as follows:

Only the header and areas chunks must be present, but a typical object file will
contain all five of the above chunks.

Each name in an object file is encoded as an offset into the string table, stored in
the OBJ_STRT chunk (see String table chunk (OBJ_STRT) on page 266). This allows
the variable-length nature of names to be factored out from primary data formats.

chunkId is an 8-byte field identifying what data the chunk contains
(note that this is an 8-byte field, not a 2-word field, so it
has the same byte order independent of endian-ness).

fileOffset is a one word field defining the byte offset within the file of
the start of the chunk. All chunks are word-aligned, so it
must be divisible by four. A value of zero indicates that the
chunk entry is unused.

size a one word field defining the exact byte size of the chunk
(which need not be a multiple of four).

Chunk Chunk Name

Header OBJ_HEAD

Areas OBJ_AREA

Identification OBJ_IDFN

Symbol Table OBJ_SYMT

String Table OBJ_STRT
250

Code file formats
A feature of chunk file format is that chunks may appear in any order in the file.
However, language processors which must also generate other object formats –
such as Unix’s a.out format – should use this flexibility cautiously.

A language translator or other system utility may add additional chunks to an
object file, for example a language-specific symbol table or language-specific
debugging data, so it is conventional to allow space in the chunk header for
additional chunks; space for eight chunks is conventional when the AOF file is
produced by a language processor which generates all five chunks described here.

The header chunk should not be confused with the chunk file’s header.

Format of the AOF header chunk

The AOF header is logically in two parts, though these appear contiguously in the
header chunk. The first part is of fixed size and describes the contents and nature
of the object file. The second part is variable in length (specified in the fixed part)
and is a sequence of area declarations defining the code and data areas within
the OBJ_AREA chunk.

The AOF header chunk (OBJ_HEAD) has the following format:

Object file type

Version ID

Number of areas

Number of symbols

Entry Area Index

1st Area Header

2nd Area Header

nth Area Header

Entry Offset

5 words per area header

(6 + (5*Number of Areas)) words in

6 words in the fixed part

the AOF header
251

Object file format
Object file type

0xC5E2D080 marks the file as being in relocatable object format (the usual output
of compilers and assemblers and the usual input to the linker).

The endian-ness of the object code can be deduced from this value and shall be
identical to the endian-ness of the containing chunk file.

Version ID

Encodes the version of AOF to which the object file complies: version 1.50 is
denoted by decimal 150; version 2.00 by 200; version 3.10 by 310; and this version
3.11 by decimal 311 (0x137).

Number of areas

The code and data of the object file is presented as a number of separate areas, in
the OBJ_AREA chunk, each with a name and some attributes (see below). Each
area is declared in the (variable-length) part of the header which immediately
follows the fixed part. The value of the Number of Areas field defines the
number of areas in the file and consequently the number of area declarations
which follow the fixed part of the header.

Number of symbols

If the object file contains a symbol table chunk OBJ_SYMT, then this field defines
the number of symbols in the symbol table.

Entry address area / entry address offset

One of the areas in an object file may be designated as containing the start address
of any program which is linked to include the file. If this is the case, the entry
address is specified as an Entry Area Index, Entry Offset pair. Entry
Area Index, in the range 1 to Number of Areas, gives the 1-origin index in
the following array of area headers of the area containing the entry point. The entry
address is defined to be the base address of this area plus Entry Offset.

A value of 0 for area-index signifies that no program entry address is defined by
this AOF file.
252

Code file formats
Format of area headers

The area headers follow the fixed part of the AOF header. Each area header has the
following form:

Area name

Each area within an object file must be given a name which is unique amongst all
the areas in the file. Area Name gives the offset of that name in the string table
(stored in the OBJ_STRT chunk – see String table chunk (OBJ_STRT) on page 266).

Area size

This field gives the size of the area in bytes, which must be a multiple of 4. Unless
the Uninitialised bit (bit 4) is set in the area attributes (see Attributes and
Alignment on page 253), there must be this number of bytes for this area in the
OBJ_AREA chunk. If the Uninitialised bit is set, then there shall be no
initialising bytes for this area in the OBJ_AREA chunk.

Number of relocations

This word specifies the number of relocation directives which apply to this area,
(equivalently: the number of relocation records following the area's contents in the
OBJ_AREA chunk – see Format of the areas chunk on page 259).

Attributes and Alignment

Each area has a set of attributes encoded in the most-significant 24 bits of the
Attributes + Alignment word. The least-significant 8 bits of this word encode the
alignment of the start of the area as a power of 2 and shall have a value between 2
and 32 (this value denotes that the area should start at an address divisible by
2alignment).

The linker orders areas in a generated image first by attributes, then by the
(case-significant) lexicographic order of area names, then by position of the
containing object module in the link list. The position in the link list of an object
module loaded from a library is not predictable.

Area name

Attributes + Alignment

Area size

Number of relocations

Base address or zero

(offset into string variable)

5 words in total
253

Object file format
The precise significance to the linker of area attributes depends on the output
being generated.

Bit 8

Bit 8 encodes the absolute attribute and denotes that the area must be placed at
its Base Address. This bit is not usually set by language processors.

Bit 9

Bit 9 encodes the code attribute: if set the area contains code; otherwise it
contains data.

Bits 10 and 11

Bits 10, 11 encode the common block definition and common block
reference attributes, respectively.

Bit 10 specifies that the area is a common block definition.

Bit 11 defines the area to be a reference to a common block, and precludes the area
having initialising data (see Bit 12, below). In effect, bit 11 implies bit 12.

If both bits 10 and 11 are set, bit 11 is ignored.

Common areas with the same name are overlaid on each other by the linker. The
Area Size field of a common definition area defines the size of a common
block. All other references to this common block must specify a size which is
smaller or equal to the definition size. If, in a link step, there is more than one
definition of an area with the common definition attribute (area of the given name
with bit 10 set), then each of these areas must have exactly the same contents. If
there is no definition of a common area, its size will be the size of the largest
common reference to it.

Although common areas conventionally hold data, it is quite legal to use bit 10 in
conjunction with bit 9 to define a common block containing code. This is most
useful for defining a code area which must be generated in several compilation
units but which should be included in the final image only once.

Bit 12

Bit 12 encodes the zero-initialised attribute, specifying that the area has no
initialising data in this object file, and that the area contents are missing from the
OBJ_AREA chunk. Typically, this attribute is given to large uninitialised data areas.
When an uninitialised area is included in an image, the linker either includes a
read-write area of binary zeroes of appropriate size, or maps a read-write area of
appropriate size that will be zeroed at image start-up time. This attribute is
incompatible with the read-only attribute (see Bit 13, below).
254

Code file formats
Whether or not a zero-initialised area is re-zeroed if the image is re-entered is a
property of the relevant image format and/or the system on which it will be
executed. The definition of AOF neither requires nor precludes re-zeroing.

To summarise, bits 10, 11 and 12 interact as follows:

So, an initialised common definition is inferred if bit 10 is set and bit 11 is not, a
Zero-initialised area is inferred if bit 12 is set and both bits 10 and 11 are unset, all
other bit combinations infer an uninitialised reference to common block.

Bit 13

Bit 13 encodes the read only attribute and denotes that the area will not be
modified following relocation by the linker. The linker groups read-only areas
together so that they may be write protected at run-time, hardware permitting.
Code areas and debugging tables should have this bit set. The setting of this bit is
incompatible with the setting of bit 12.

Bit 14

Bit 14 encodes the position independent (PI) attribute, usually only of
significance for code areas. Any reference to a memory address from a PI area must
be in the form of a link-time-fixed offset from a base register (e.g. a PC-relative
branch offset).

Bit 15

Bit 15 encodes the debugging table attribute and denotes that the area
contains symbolic debugging tables. The linker groups these areas together so
they can be accessed as a single continuous chunk at or before run-time (usually, a
debugger will extract its debugging tables from the image file prior to starting the
debuggee).

Usually, debugging tables are read-only and, therefore, have bit 13 set also. In
debugging table areas, bit 9 (the code attribute) is ignored.

12 11 10 Interaction

0 0 1 Initialised common definition

0 1 1 Initialised common definition

0 1 0 Uninitialised reference to common block

1 0 1 Uninitialised reference to common block

1 1 0 Uninitialised reference to common block

1 1 1 Uninitialised reference to common block

1 0 0 Zero-initialised (bss = unnamed common reference)
255

Object file format
Bits 16-19 encode additional attributes of code areas and shall be non-0 only if the
area has the code attribute (bit 9 set).

Bit 16

Bit 16 encodes the 32-bit PC attribute, and denotes that code in this area complies
with a 32-bit variant of the ARM Procedure Call Standard (APCS). Such code may
be incompatible with code which complies with a 26-bit variant of the APCS. For
details, refer to 32-bit PC vs 26-bit PC on page 307.

Bit 17

Bit 17 encodes the reentrant attribute, and denotes that code in this area
complies with a reentrant variant of the ARM Procedure Call Standard.

Bit 18

Bit 18, when set, denotes that code in this area uses the ARM's extended
floating-point instruction set. Specifically, function entry and exit use
the LFM and SFM floating-point save and restore instructions rather than multiple
LDFEs and STFEs. Code with this attribute may not execute on older ARM-based
systems.

Bit 19

Bit 19 encodes the No Software Stack Check attribute, denoting that code in
this area complies with a variant of the ARM Procedure Call Standard without
software stack-limit checking. Such code may be incompatible with code which
complies with a limit-checked variant of the APCS.

Bits 20-27 encode additional area attributes and have different meanings for code
areas and data areas.

Bit 20

In an area where the code attribute (bit 9) is set, bit 20 indicates that this is a
Thumb code area.

For a data area, where bit 9 is unset, bit 20 encodes the based attribute, denoting
that the area is addressed via link-time-fixed offsets from a base register (encoded
in bits 24-27). Based areas have a special role in the construction of shared
libraries and ROM-able code, and are treated specially by the linker.
256

Code file formats
Bit 21

In a code area, bit 21 indicates that this area may contain half word load or store
instructions. This bit is set by ObjAsm if you specify the HALFWORD attribute
when declaring the area, or if you use any instructions from the group LDRH,
LDRSH, STRH, LDREXH, STREXH, LDAH, STLH, LDAEXH or STLEXH.

In a data area, bit 21 encodes the Shared Library Stub Data attribute. In a
link step involving layered shared libraries, there may be several copies of the stub
data for any library not at the top level. In other respects, areas with this attribute
are treated like data areas with the common definition (bit 10) attribute. Areas
which also have the zero initialised attribute (bit 12) are treated much the same as
areas with the common reference (bit 11) attribute.

This attribute is not usually set by language processors, but is set only by the
linker.

Bit 22

For code areas, bit 22 indicates that the area has been compiled to be suitable for
ARM/Thumb interworking. Specifically, any exported functions in this area,
whether it be ARM or Thumb code, must be written such that they can return
control to a calling function of either instruction set. In data areas this bit shall be
set to 0.

Bit 23

Bit 23 is reserved and shall be set to 0.

Bits 24-27

In data areas, bits 24-27 encode the base register used to address a based
area. If the area does not have the based attribute, or is a code area, then these bits
shall be set to 0.

Bits 28-30

Bits 28-30 are reserved and shall be set to 0.

Bit 31

Bit 31 is valid for both code and data areas, and when set, indicates that
double-precision floating point data in the area is stored using VFP rules
(endianness matches the rest of the file) rather than FPA rules (most-significant
word always stored first). For code areas in little-endian mode, it also indicates
that when functions in the area receive double-precision arguments and/or return
a double-precision value in integer registers or on the stack, the lower register
257

Object file format
number or lower stack address holds the least significant word (little-endian VFP
compatibility mode). Otherwise (big-endian mode or FPA compatibility mode), the
lower register or lower stack address holds the most-significant word.

An area with this attribute cannot be linked with an area which lacks the attribute.

Area Attributes Summary

Bit Mask Attribute Description

8 0x00000100 Absolute attribute

9 0x00000200 Code attribute

10 0x00000400 Common block definition

11 0x00000800 Common block reference

12 0x00001000 Uninitialised (0-initialised)

13 0x00002000 Read only

14 0x00004000 Position independent

15 0x00008000 Debugging tables

Code areas only

16 0x00010000 Complies with the 32-bit APCS

17 0x00020000 Reentrant code

18 0x00040000 Uses extended FP inst set

19 0x00080000 No software stack checking

20 0x00100000 Thumb code (else ARM)

21 0x00200000 Uses half word instructions

22 0x00400000 Has ARM/Thumb interworking

Data areas only

20 0x00100000 Based area

21 0x00200000 Shared library stub data

24-27 0x0F000000 Base register for based area

Code and data areas

31 0x80000000 Floating point data uses VFP rules
258

Code file formats
Format of the areas chunk

The areas chunk (ChunkId of OBJ_AREA) contains the actual areas (code, data,
zero- initialised data, debugging data, etc.) plus any associated relocation
information. Graphically, an area’s layout is:

An area is simply a sequence of byte values. The endian-ness of the words and
half-words within it shall agree with that of the containing AOF file.

An area is followed by its associated table of relocation directives (if any). An area
is either completely initialised by the values from the file or is initialised to zero, as
specified by bit 12 of its area attributes.

Both the area contents and the table of relocation directives are aligned to 4-byte
boundaries.

Relocation directives

A relocation directive describes a value which is computed at link time or load
time, but which cannot be fixed when the object module is created.

In the absence of applicable relocation directives, the value of a byte, halfword,
word or instruction from the preceding area is exactly the value that will appear in
the final image.

A field may be subject to more than one relocation.

Pictorially, a relocation directive looks like:

Offset

Offset is the byte offset in the preceding area of the subject field to be relocated by
a value calculated as described below.

Area 1 relocation

Area 1

Area n

Area n relocation

1 B A R FT 24-bit SID

Offset

II
259

Object file format
SID (Subject Identification)

The interpretation of the 24-bit SID field depends on the A bit.

If A (bit 27) is 1, the subject field is relocated (as further described below) by the
value of the symbol of which SID is the 0-origin index in the symbol table chunk.

If A (bit 27) is 0, the subject field is relocated (as further described below) by the
base of the area of which SID is the 0-origin index in the array of areas, (or,
equivalently, in the array of area headers).

FT (Field Type)

The 2-bit field type FT (bits 25, 24) describes the subject field:

00 the field to be relocated is a byte

01 the field to be relocated is a half-word (2 bytes)

10 the field to be relocated is a word (4 bytes)

11 the field to be relocated is an instruction or instruction sequence

Bytes, halfwords and instructions may only be relocated by values of suitably small
size. Overflow is faulted by the linker.

An ARM branch, or branch-with-link instruction is always a suitable subject for a
relocation directive of field type instruction.

II (Instruction Instruction)

If the subject field is an instruction sequence (FT = 11), then Offset addresses the
first instruction of the sequence and the II field (bits 29 and 30) constrains how
many instructions may be modified by this directive:

00 no constraint (the linker may modify as many contiguous instructions as
it needs to)

01 the linker will modify at most 1 instruction

10 the linker will modify at most 2 instructions

11 the linker will modify at most 3 instructions
260

Code file formats
R (relocation type)

The way the relocation value is used to modify the subject field is determined by
the R (PC-relative) bit, modified by the B (based) bit.

R (bit 26) = 1 and B (bit 28) = 0 specifies PC-relative relocation: to the subject field
is added the difference between the relocation value and the base of the area
containing the subject field. In pseudo C:

subject_field = subject_field + (relocation_value -
base_of_area_containing(subject_field))

As a special case, if A is 0, and the relocation value is specified as the base of the
area containing the subject field, then it is not added and:

subject_field = subject_field -
base_of_area_containing(subject_field)

This caters for relocatable PC-relative branches to fixed target addresses.

If R is 1, B is usually 0. If B is 1 this is used to denote that the inter-link-unit value
of a branch destination is to be used, rather than the more usual intra-link-unit
value (this allows compilers to perform the tail-call optimisation on reentrant
code).

R (bit 26) = 0 and B (bit 28) = 0, specifies plain additive relocation: the relocation
value is added to the subject field. In pseudo C:

subject_field = subject_field + relocation_value

R (bit 26) = 0 and B (bit 28) = 1, specifies based area relocation. The relocation
value must be an address within a based data area. The subject field is
incremented by the difference between this value and the base address of the
consolidated based area group (the linker consolidates all areas based on the
same base register into a single, contiguous region of the output image). In pseudo
C:

subject_field = subject_field + (relocation_value -
base_of_area_group_containing(relocation_value))

For example, when generating reentrant code, the C compiler will place address
constants in an adcon area based on register sb, and load them using sb relative
LDRs. At link time, separate adcon areas will be merged and sb will no longer
point where presumed at compile time. B type relocation of the LDR instructions
corrects for this.

Bits 29-31

Bit 31 of the relocation flags word shall be 1, and (unless FT bits are 11) bits 29 and
30 shall be 0.
261

Object file format
Format of the symbol table chunk

The Number of Symbols field in the fixed part of the AOF header (OBJ_STRT)
defines how many entries there are in the symbol table. Each symbol table entry
has the following format:

Name

This value is an index into the string table (in chunk OBJ_STRT) and thus locates
the character string representing the symbol.

Value

This is only meaningful if the symbol is a defining occurrence (bit 0 of Attributes
set), or a common symbol (bit 6 of Attributes set):

● if the symbol is absolute (bits 0,2 of Attributes set), this field contains the
value of the symbol

● if the symbol is a common symbol (bit 6 of Attributes set), this field contains
the byte-length of the referenced common area

● otherwise, Value is interpreted as an offset from the base address of the area
named by Area Name, which must be an area defined in this object file.

Area Name

is meaningful only if the symbol is a non-absolute defining occurrence (bit 0 of
Attributes set, bit 2 unset). In this case it gives the index into the string table for
the name of the area in which the symbol is defined (which must be an area in this
object file).

Name

Value

Area name

Attributes
4 words per entry
262

Code file formats
Symbol Attributes

The Symbol Attributes word is interpreted as follows:

● Bit 0 denotes that the symbol is defined in this object file.

● Bit 1 denotes that the symbol has global scope and can be matched by the
linker to a similarly named symbol from another object file.

Specifically:

Bits 1 and 0

Bit 2

Bit 2 encodes the absolute attribute which is meaningful only if the symbol is a
defining occurrence (bit 0 set). If set, it denotes that the symbol has an absolute
value, for example, a constant. If unset, the symbol's value is relative to the base
address of the area defined by the Area Name field of the symbol.

Bit 3

Bit 3 encodes the case insensitive reference attribute which is meaningful only if
bit 0 is unset (that is, if the symbol is an external reference). If set, the linker will
ignore the case of the symbol names it tries to match when attempting to resolve
this reference.

01 (bit 1 unset, bit 0 set)
denotes that the symbol is defined in this object file and has scope
limited to this object file (when resolving symbol references, the
linker will only match this symbol to references from within the
same object file).

10 (bit 1 set, bit 0 unset)
denotes that the symbol is a reference to a symbol defined in
another object file. If no defining instance of the symbol is found
the linker attempts to match the name of the symbol to the names
of common blocks. If a match is found it is as if there were defined
an identically-named symbol of global scope, having as its value the
base address of the common area.

11 denotes that the symbol is defined in this object file with global
scope (when attempting to resolve unresolved references, the linker
will match this definition to a reference from another object file).

00 Reserved by Acorn.
263

Object file format
Bit 4

Bit 4 encodes the weak attribute which is meaningful only if the symbol is an
external reference, (bits 1,0 = 10). It denotes that it is acceptable for the reference
to remain unsatisfied and for any fields relocated via it to remain unrelocated. The
linker ignores weak references when deciding which members to load from an
object library.

Bit 5

Bit 5 encodes the strong attribute which is meaningful only if the symbol is an
external defining occurrence (if bits 1,0 = 11). In turn, this attribute only has
meaning if there is a non-strong, external definition of the same symbol in another
object file. In this case, references to the symbol from outside of the file containing
the strong definition, resolve to the strong definition, while those within the file
containing the strong definition resolve to the non-strong definition.

This attribute allows a kind of link-time indirection to be enforced. Usually, a
strong definition will be absolute, and will be used to implement an operating
system's entry vector having the forever binary property.

Bit 6

Bit 6 encodes the common attribute, which is meaningful only if the symbol is an
external reference (bits 1,0 = 10). If set, the symbol is a reference to a common area
with the symbol's name. The length of the common area is given by the symbol's
Value field (see above). The linker treats common symbols much as it treats
areas having the Common Reference attribute – all symbols with the same name
are assigned the same base address, and the length allocated is the maximum of
all specified lengths.

If the name of a common symbol matches the name of a common area, then these
are merged and the symbol identifies the base of the area.

All common symbols for which there is no matching common area (reference or
definition) are collected into an anonymous, linker-created, pseudo-area.

Bit 7

Bit 7 is reserved and shall be set to 0.
264

Code file formats
Bit 8-13

Bits 8-13 encode additional attributes of symbols defined in code areas.

Bit 8 encodes the code datum attribute which is meaningful only if this
symbol defines a location within an area having the Code attribute. It denotes
that the symbol identifies a (usually read-only) datum, rather than an
executable instruction.

Bit 9 encodes the floating-point arguments in floating-point registers
attribute. This is meaningful only if the symbol identifies a function entry
point. A symbolic reference with this attribute cannot be matched by the linker
to a symbol definition which lacks the attribute.

Bit 10 is reserved and shall be set to 0.

Bit 11 is the simple leaf function attribute which is meaningful only if this
symbol defines the entry point of a sufficiently simple leaf function (a leaf
function is one which calls no other function). For a reentrant leaf function it
denotes that the function's inter-link-unit entry point is the same as its
intra-link-unit entry point.

Bit 12 is the Thumb attribute. This is meaningful only if this symbol defines a
location within an area having the code attribute.

Bit 13 encodes the soft floating-point attribute. This is meaningful only if the
symbol identifies a function entry point. It declares that the function not only
receives its floating point arguments in integer registers, but also returns any
floating point return value in integer registers. A symbolic reference with this
attribute cannot be matched by the linker to a symbol definition which lacks
the attribute.

Bit 14-31

Bits 14-31 are reserved and shall be set to 0.
265

Object file format
Symbol Attribute Summary

String table chunk (OBJ_STRT)

The string table chunk contains all the print names referred to from the header and
symbol table chunks. This separation is made to factor out the variable length
characteristic of print names from the key data structures.

A print name is stored in the string table as a sequence of non-control characters
(codes 32-126 and 160-255) terminated by a NUL (0) byte, and is identified by an
offset from the start of the table. The first 4 bytes of the string table contain its
length (including the length of its length word), so no valid offset into the table is
less than 4, and no table has length less than 4.

The endian-ness of the length word shall be identical to the endian-ness of the
AOF and chunk files containing it.

Identification chunk (OBJ_IDFN)

This chunk should contain a string of printable characters (codes 10-13 and 32-126)
terminated by a NUL (0) byte, which gives information about the name and version
of the tool which generated the object file. Use of codes in the range 128-255 is
discouraged, as the interpretation of these values is host dependent.

Bit Mask Attribute Description

0 0x00000001 Symbol is defined in this file

1 0x00000002 Symbol has global scope

2 0x00000004 Absolute attribute

3 0x00000008 Case-insensitive attribute

4 0x00000010 Weak attribute

5 0x00000020 Strong attribute

6 0x00000040 Common attribute

Code symbols only

8 0x00000100 Code area datum attribute

9 0x00000200 FP args in FP regs attribute

10 0x00000400 Reserved and currently set to 0

11 0x00000800 Simple leaf function attribute

12 0x00001000 Thumb attribute

13 0x00002000 Soft floating point attribute

14-31 Reserved and currently set to 0
266

Code file formats
ALF
ALF is the format of linkable libraries (such as the C RISC OS Toolbox library
toolboxlib).

Library file format

For library files, the first part of each chunk's name is ‘LIB_’; for object libraries, the
names of the additional two chunks begin with ‘OFL_’.

Each piece of a library file is stored in a separate, identifiable chunk, named as
follows:

There may be many LIB_DATA chunks in a library, one for each library member. In
all chunks, word values are stored with the same byte order as the target system;
strings are stored in ascending address order, which is independent of target byte
order.

LIB_DIRY

The LIB_DIRY chunk contains a directory of the modules in the library, each of
which is stored in a LIB_DATA chunk. The directory size is fixed when the library is
created. The directory consists of a sequence of variable length entries, each an
integral number of words long. The number of directory entries is determined by
the size of the LIB_DIRY chunk.

This is shown pictorially in the following diagram:

Chunk Chunk Name

Directory LIB_DIRY

Time-stamp LIB_TIME

Version LIB_VSRN

Data LIB_DATA

Symbol table OFL_SYMT – object code libraries only

Time-stamp OFL_TIME – object code libraries only

ChunkIndex

EntryLength

DataLength

Data

the size of this LIB_DIRY chunk
(an integral number of words)

the size of the Data
(an integral number of words)
267

Library file format
ChunkIndex

ChunkIndex is a word containing the 0-origin index within the chunk file header of
the corresponding LIB_DATA chunk. Conventionally, the first 3 chunks of an OFL
file are LIB_DIRY, LIB_TIME and LIB_VSRN, so ChunkIndex is at least 3. A
ChunkIndex of 0 means the directory entry is unused.

The corresponding LIB_DATA chunk entry gives the offset and size of the library
module in the library file.

EntryLength

EntryLength is a word containing the number of bytes in this LIB_DIRY entry,
always a multiple of 4.

DataLength

DataLength is a word containing the number of bytes used in the data section of
this LIB_DIRY entry, also a multiple of 4.

Data

The Data section consists of, in order:

● a 0-terminated string (the name of the library member)

● any other information relevant to the library module (often empty)

● a 2-word, word-aligned time stamp.

Strings should contain only ISO-8859 non-control characters (codes [0-31], 127
and 128+[0-31] are excluded).

The string field is the name used to identify this library module. Typically it is the
name of the file from which the library member was created.

The format of the time stamp is described in Time Stamps on page 269. Its value is
an encoded version of the last-modified time of the file from which the library
member was created.

To ensure maximum robustness with respect to earlier, now obsolete, versions of
the ARM object library format:

● Applications which create libraries or library members should ensure that the
LIB_DIRY entries they create contain valid time stamps.
268

Code file formats
● Applications which read LIB_DIRY entries should not rely on any data beyond
the end of the name string being present, unless the difference between the
DataLength field and the name-string length allows for it. Even then, the
contents of a time stamp should be treated cautiously and not assumed to be
sensible.

Applications which write LIB_DIRY or OFL_SYMT entries should ensure that
padding is done with NUL (0) bytes; applications which read LIB_DIRY or
OFL_SYMT entries should make no assumptions about the values of padding bytes
beyond the first, string-terminating NUL byte.

Time Stamps

A library time stamp is a pair of words encoding the following:

● a 6-byte count of centi-seconds since the start of the 20th century

● a 2-byte count of microseconds since the last centi-second (usually 0).

The first word stores the most significant 4 bytes of the 6-byte count; the least
significant 2 bytes of the count are in the most significant half of the second word.

The least significant half of the second word contains the microsecond count and
is usually 0.

Time stamp words are stored in target system byte order: they must have the same
endian-ness as the containing chunk file.

LIB_TIME

The LIB_TIME chunk contains a 2-word time stamp recording when the library was
last modified. It is, hence, 8 bytes long.

LIB_VSRN

The version chunk contains a single word whose value is 1.

LIB_DATA

A LIB_DATA chunk contains one of the library members indexed by the LIB_DIRY
chunk. The endian-ness or byte order of this data is, by assumption, the same as
the byte order of the containing library/chunk file.

centiseconds since 00:00:00
1st January
1900 u-seconds

first (most significant) word

second (least significant) word
269

Object Code Libraries
No other interpretation is placed on the contents of a member by the library
management tools. A member could itself be a file in chunk file format or even
another library.

Object Code Libraries

An object code library is a library file whose members are files in ARM Object
Format (see section AOF on page 249 for details).

An object code library contains two additional chunks: an external symbol table
chunk named OFL_SYMT; and a time stamp chunk named OFL_TIME.

OFL_SYMT

The external symbol table contains an entry for each external symbol defined by
members of the library, together with the index of the chunk containing the
member defining that symbol.

The OFL_SYMT chunk has exactly the same format as the LIB_DIRY chunk except
that the Data section of each entry contains only a string, the name of an external
symbol, and between 1 and 4 bytes of NUL padding, as follows:

OFL_SYMT entries do not contain time stamps.

OFL_TIME

The OFL_TIME chunk records when the OFL_SYMT chunk was last modified and
has the same format as the LIB_TIME chunk (see Time Stamps on page 269).

ChunkIndex

EntryLength

DataLength

External Symbol Name

Padding

the size of this OFL_SYMT chunk
(an integral number of words)

the size of the External Symbol Name and
Padding (an integral number of words)
270

Code file formats
AIF
ARM Image Format (AIF) is a simple format for ARM executable images, which
consists of a 128 byte header followed by the image's code, followed by the image's
initialised static data.

Properties of AIF

Two variants of AIF exist:

● Executable AIF (in which the header is part of the image itself) can be
executed by entering the header at its first word. Code in the header ensures
the image is properly prepared for execution before being entered at its entry
address.

● Non-executable AIF (in which the header is not part of the image, but merely
describes it) is intended to be loaded by a program which interprets the
header, and prepares the following image for execution.

The two flavours of AIF are distinguished as follows:

● The fourth word of an executable AIF header is BL entrypoint. The most
significant byte of this word (in the target byte order) is 0xEB.

● The fourth word of a non-executable AIF image is the offset of its entry point
from its base address. The most significant nibble of this word (in the target
byte order) is 0x0.

The base address of an executable AIF image is the address at which its header
should be loaded; its code starts at base + 0x80. The base address of a
non-executable AIF image is the address at which its code should be loaded.

Executable AIF

The following remarks about executable AIF apply also to non-executable AIF,
except that loader code must interpret the AIF header and perform any required
decompression, relocation, and creation of zero-initialised data. Compression and
relocation are, of course, optional: AIF is often used to describe very simple
absolute images.

It is assumed that on entry to a program in ARM Image Format (AIF), the general
registers contain nothing of value to the program (the program is expected to
communicate with its operating environment using SWI instructions or by calling
functions at known, fixed addresses).
271

Properties of AIF
A program image in ARM Image Format is loaded into memory at its load address,
and entered at its first word. The load address may be:

● an implicit property of the type of the file containing the image (as is usual
with UNIX executable file types, Acorn Absolute file types, etc.)

● read by the program loader from offset 0x28 in the file containing the AIF
image

● given by some other means, e.g. by instructing an operating system or
debugger to load the image at a specified address in memory.

An AIF image may be compressed and can be self-decompressing (to support
faster loading from slow peripherals, and better use of space in ROMs and delivery
media such as floppy discs). An AIF image is compressed by a separate utility
which adds self-decompression code and data tables to it.

If created with appropriate linker options, an AIF image may relocate itself at load
time. Two kinds of self-relocation are supported:

● relocate to load address (the image can be loaded anywhere and will execute
where loaded)

● self-move up memory, leaving a fixed amount of workspace above, and
relocate to this address (the image is loaded at a low address and will move to
the highest address which leaves the required workspace free before executing
there).

The second kind of self-relocation can only be used if the target system supports
an operating system or monitor call which returns the address of the top of
available memory. The ARM linker provides a simple mechanism for using a
modified version of the self-move code illustrated in Self-Move and Self-Relocation
Code on page 277, allowing AIF to be easily tailored to new environments.

AIF images support being debugged by the Desktop debugging tool (DDT).
Low-level and source-level support are orthogonal, and both, either, or neither
kind of debugging support need be present in an AIF image.

For details of the format of the debugging tables see ASD on page 280.

References from debugging tables to code and data are in the form of relocatable
addresses. After loading an image at its load address these values are effectively
absolute. References between debugger table entries are in the form of offsets
from the beginning of the debugging data area. Thus, following relocation of a
whole image, the debugging data area itself is position independent and may be
copied or moved by the debugger.
272

Code file formats
The Layout of AIF

The layout of a compressed AIF image is as follows:

The header is small, fixed in size, and described below. In a compressed AIF image,
the header is not compressed.

An uncompressed image has the following layout:

Debugging data is absent unless the image has been linked using the linker's -d
option and, in the case of source-level debugging, unless the components of the
image have been compiled using the compiler's -g option.

The relocation list is a list of byte offsets from the beginning of the AIF header, of
words to be relocated, followed by a word containing -1. The relocation of
non-word values is not supported.

Header

Compressed image

Decompression data

Decompression code

This data is position-independent

This code is position-independent

Header

Read-only area

Read-write area

Debugging data

Self-relocation code

Relocation list

(optional)

Position-independent

List of words to relocate, terminated by -1
273

The Layout of AIF
After the execution of the self-relocation code – or if the image is not
self-relocating – the image has the following layout:

At this stage a debugger is expected to copy any debugging data to somewhere
safe, otherwise it will be overwritten by the zero-initialised data and/or the
heap/stack data of the program. A debugger can seize control at the appropriate
moment by copying, then modifying, the third word of the AIF header (see AIF
Header Layout on page 275).

Header

Read-only area

Read-write area

Debugging data (optional)
274

Code file formats
AIF Header Layout

Notes

NOP is encoded as MOV r0, r0.

BL is used to make the header addressable via r14 in a position-independent
manner, and to ensure that the header will be position-independent. Care is taken
to ensure that the instruction sequences which compute addresses from these r14
values work in both 26-bit and 32-bit ARM modes.

BL DecompressCode

BL SelfRelocCode

BL DBGInit/ZeroInit

BL ImageEntryPoint

<Program Exit Instr>

Image ReadOnly size

Image ReadWrite size

Image Debug size

Image zero-init size

Image debug type

Image base

Work space

Address mode: 26/32

Data base

NOP 0 if the image is not compressed

NOP 0 if the image is not self-relocating

NOP 0 if the image has none

BL to make header addressable via R14 ...

Includes header size if executable AIF;

Exact size - a multiple of 4 bytes

Exact size - a multiple of 4 bytes

Exact size - a multiple of 4 bytes

0,1,2 or 3 (see below)

Address the image (code) was linked at

Header is 32 words long

Min work space - in bytes - to be reserved

excludes header size if non-executable AIF

00

04

08

0C

10

14

18

1C

20

24

28

2C

30

34

38

40

44

or
EntryPoint offset

Two reserved words

<Debug Init Instr>

Zero-init code

+3 flag bytes

... initially 0 ...

(15 words as below)

... but the application shall not return ...
Non-executable AIF uses an offset, not BL

...last ditch in case of return

a self-moving relocatable image

LS byte contains 26 or 32
bit 8 set when using a separate data base

Address the image data was linked at

NOP if unused
275

The Layout of AIF
Program Exit Instruction will usually be a SWI causing program termination. On
systems which lack this, a branch-to-self is recommended. Applications are
expected to exit directly and not to return to the AIF header, so this instruction
should never be executed. The ARM linker sets this field to SWI 0x11 by default, but
it may be set to any desired value by providing a template for the AIF header in an
area called AIF_HDR in the first object file in the input list to Link.

Image ReadOnly Size includes the size of the AIF header only if the AIF type is
executable (that is, if the header itself is part of the image).

An AIF image is re-startable if, and only if, the program it contains is re-startable
(note: an AIF image is not reentrant). If an AIF image is to be re-started then,
following its decompression, the first word of the header must be set to NOP.
Similarly, following self-relocation, the second word of the header must be reset to
NOP. This causes no additional problems with the read-only nature of the code
segment: both decompression and relocation code must write to it. On systems
with memory protection, both the decompression code and the self-relocation
code must be bracketed by system calls to change the access status of the
read-only section (first to writable, then back to read-only).

The image debug type has the following meaning:

0: No debugging data are present.

1: Low-level debugging data are present.

2: Source level (ASD) debugging data are present.

3: 1 and 2 are present together.

All other values of image debug type are reserved to ARM Ltd.

Debug Initialisation Instruction (if used) is expected to be a SWI instruction
which alerts a resident debugger that a debuggable image is commencing
execution. Of course, there are other possibilities within the AIF framework. The
linker sets this field to NOP by default, but it can be customised by providing your
own template for the AIF header in an area called AIF_HDR in the first object file in
the input list to Link.

The Address mode word (at offset 0x30) is 0, or contains in its least significant
byte (using the byte order appropriate to the target):

● the value 26, indicating the image was linked for a 26-bit ARM mode, and may
not execute correctly in a 32-bit mode

● the value 32, indicating the image was linked for a 32-bit ARM mode, and may
not execute correctly in a 26-bit mode.

A value of 0 indicates an old-style 26-bit AIF header.
276

Code file formats
If the Address mode word has bit 8 set ((address_mode & 0x100) != 0), then the
image was linked with separate code and data bases (usually the data is placed
immediately after the code). In this case, the word at offset 0x34 contains the base
address of the image's data.

Zero-Initialisation Code

The Zero-initialisation code is as follows:

 ZeroInit
 SUB ip, lr, pc ; base+12+[PSR]-(ZeroInit+12+PSR])
 ; = base-ZeroInit
 ADD ip, pc, ip ; base-ZeroInit+ZeroInit+16
 ; = base+16
 LDMIB ip, {r0,r1,r2,r3} ; various sizes
 SUB ip, ip, #16 ; image base
 LDR r2, [ip, #48] ; flags
 TST r2, #256 ; separate data area?
 LDRNE ip, [ip, #52] ; Yes, so get it...
 ADDEQ ip, ip, r0 ; No, so add + RO size
 ADD ip, ip, r1 ; + RW size = base of 0-init area
 MOV r0, #0
 CMP r3, #0
 00 MOVLE pc, lr ; nothing left to do
 STR r0, [ip],#4
 SUBS r3, r3, #4
 B %B00

Self-Move and Self-Relocation Code

This code is added to the end of an AIF image by the linker, immediately before the
list of relocations (which is terminated by -1). Note that the code is entered via a
BL from the second word of the AIF header so, on entry, r14 points to
AIFHeader + 8. In 26-bit ARM modes, r14 also contains a copy of the PSR flags.

On entry, the relocation code calculates the address of the AIF header (in a
CPU-independent fashion) and decides whether the image needs to be moved. If
the image doesn't need to be moved, the code branches to R(elocateOnly).
277

Zero-Initialisation Code
 RelocCode
 NOP ; required by ensure_byte_order()
 ; and used below.
 SUB ip, lr, pc ; base+8+[PSR]-(RelocCode+12+[PSR])
 ; = base-4-RelocCode
 ADD ip, pc, ip ; base-4-RelocCode+RelocCode+16 = base+12
 SUB ip, ip, #12 ; -> header address
 LDR r0, RelocCode ; NOP
 STR r0, [ip, #4] ; won't be called again on image re-entry
 LDR r9, [ip, #&2C] ; min free space requirement
 CMP r9, #0 ; 0 => no move, just relocate
 BEQ RelocateOnly

If the image needs to be moved up memory, then the top of memory has to be
found. Here, a system service (SWI 0x10) is called to return the address of the top
of memory in r1. This is, of course, system specific and should be replaced by
whatever code sequence is appropriate to the environment.

 LDR r0, [ip, #&20] ; image zero-init size
 ADD r9, r9, r0 ; space to leave = min free + zero init
 SWI #&10 ; return top of memory in r1.

The following code calculates the length of the image inclusive of its relocation
data, and decides whether a move up store is possible.

 ADR r2, End ; -> End
 01 LDR r0, [r2], #4 ; load relocation offset, increment r2
 CMNS r0, #1 ; terminator?
 BNE %B01 ; No, so loop again
 SUB r3, r1, r9 ; MemLimit - freeSpace
 SUBS r0, r3, r2 ; amount to move by
 BLE RelocateOnly ; not enough space to move...
 BIC r0, r0, #15 ; a multiple of 16...
 ADD r3, r2, r0 ; End + shift
 ADR r8, %F02 ; intermediate limit for copy-up

Finally, the image copies itself four words at a time, being careful about the
direction of copy, and jumping to the copied copy code as soon as it has copied
itself.

 02 LDMDB r2!, {r4-r7}
 STMDB r3!, {r4-r7}
 CMP r2, r8 ; copied the copy loop?
 BGT %B02 ; not yet
 ADD r4, pc, r0
 MOV pc, r4 ; jump to copied copy code
 03 LDMDB r2!, {r4-r7}
 STMDB r3!, {r4-r7}
 CMP r2, ip ; copied everything?
 BGT %B03 ; not yet
 ADD ip, ip, r0 ; load address of code
 ADD lr, lr, r0 ; relocated return address
278

Code file formats
Whether the image has moved itself or not, control eventually arrives here, where
the list of locations to be relocated is processed. Each location is word sized and is
relocated by the difference between the address the image was loaded at (the
address of the AIF header) and the address the image was linked at (stored at offset
0x28 in the AIF header).

 RelocateOnly
 LDR r1, [ip, #&28] ; header + 0x28 = code base set by Link
 SUBS r1, ip, r1 ; relocation offset
 MOVEQ pc, lr ; relocate by 0 so nothing to do
 STR ip, [ip, #&28] ; new image base = actual load address
 ADR r2, End ; start of reloc list
 04 LDR r0, [r2], #4 ; offset of word to relocate
 CMNS r0, #1 ; terminator?
 MOVEQ pc, lr ; yes => return
 LDR r3, [ip, r0] ; word to relocate
 ADD r3, r3, r1 ; relocate it
 STR r3, [ip, r0] ; store it back
 B %B04 ; and do the next one
 End ; The list of offsets of locations to
 ; relocate starts here, terminated by -1

You can customise the self-relocation and self-moving code generated by Link by
providing your version of it in an area called AIF_RELOC in the first object file in
Link's input list.
279

ASD
ASD
Acknowledgement: This design is based on work originally done for Acorn
Computers by Topexpress Ltd.

This section specifies the format of symbolic debugging data generated by ARM
compilers, which is used by the Desktop debugging tool (DDT) to support high
level language oriented, interactive debugging.

For each separate compilation unit (called a section) the compiler produces
debugging data, and a special area in the object code (see section AOF on
page 249 for an explanation of ARM Object Format, including areas and their
attributes). Debugging data are position independent, containing only relative
references to other debugging data within the same section, and relocatable
references to other compiler-generated areas.

Debugging data areas are combined by the linker into a single contiguous section
of a program image. For a description of the linker's principal output format see
section AIF on page 271.

Since the debugging section is position-independent, the debugger can move it to
a safe location before the image starts executing. If the image is not executed
under debugger control, the debugging data are simply overwritten.

The format of debugging data allows for a variable amount of detail. This
potentially allows the user to trade off among memory used, disc space used,
execution time, and debugging detail.

Assembly-language level debugging is also supported, though in this case the
debugging tables are generated by the linker. If required, the assembler can
generate debugging table entries relating code addresses to source lines.
Low-level debugging tables appear in an extra section item, as if generated by an
independent compilation (see Debugging Data Items in Detail on page 283). Low-level
and high-level debugging are orthogonal facilities, though DDT allows the user to
move smoothly between levels if both sets of debugging data are present in an
image.

Order of Debugging Data

A debug data area consists of a series of items. The arrangement of these items
mimics the structure of the high-level language program itself.

For each debug area, the first item is a section item, giving global information
about the compilation, including a code identifying the language, and flags
indicating the amount of detail included in the debugging tables.
280

Code file formats
Each datum, function, procedure, etc., definition in the source program has a
corresponding debug data item; these items appear in an order corresponding to
the order of definitions in the source. This means that any nested structure in the
source program is preserved in the debugging data, and the debugger can use this
structure to make deductions about the scope of various source-level objects. Of
course, for procedure definitions, two debug items are needed: a procedure item
to mark the definition itself, and an endproc item to mark the end of the
procedure's body and the end of any nested definitions. If procedure definitions
are nested then the procedure-endproc brackets are nested too. Variable and type
definitions made at the outermost level, of course, appear outside of all
procedure/endproc items.

Information about the relationship between the executable code and source files is
collected together and appears as a fileinfo item, which is always the final item in
a debugging area. Because of the C language's #include facility, the executable
code produced from an outer-level source file may be separated into disjoint
pieces interspersed with that produced from the included files. Therefore, source
files are considered to be collections of ‘fragments’, each corresponding to a
contiguous area of executable code, and the fileinfo item is a list with an entry for
each file, each in turn containing a list with an entry for each fragment. The fileinfo
field in the section item addresses the fileinfo item itself. In each procedure item
there is a ‘fileentry’ field, which refers to the file-list entry for the source file
containing the procedure's start; there is a separate one in the endproc item
because it may possibly not be in the same source file.

Endian-ness and the Encoding of Debugging Data

The ARM can be configured to use either a little-endian memory system (the least
significant byte of each 4-byte word has the lowest address), or a big-endian
memory system (the most significant byte of each 4-byte word has the lowest
address).

In general, the code to be generated varies according to the endian-ness (or
byte-sex) of the target. The linker has insufficient information to change an object
file’s byte sex, so object files are encoded using the byte order of the intended
target, independently of the byte order of the host system on which the compiler or
assembler runs. The linker accepts inputs having either byte order, but rejects
mixed sex inputs, and generates its output using the same byte order.

This means that producers of debugging tables must be prepared to generate them
in either byte order, as required. In turn, this requires definitions to be very clear
about when a 4-byte word is being used (which will require reversal on output or
281

Representation of Data Types
input when cross-sex compiling or debugging), and when a sequence of bytes is
being used (which requires no special treatment provided it is written and read as
a sequence of bytes in address order).

Representation of Data Types

Several of the debugging data items (e.g. procedure and variable) have a type word
field to identify their data type. This field contains, in the most significant 24 bits,
a code to identify a base type, and in the least significant 8 bits, a pointer count:

0 to denote the type itself
1 to denote a pointer to the type
2 to denote a pointer to a pointer to...
etc.

For simple types the code is a positive integer as follows, (all codes are decimal):

 void 0
 signed integers
 single byte 10
 half-word 11
 word 12
 unsigned integers
 single byte 20
 half-word 21
 word 22
 floating point
 float 30
 double 31
 long double 32
 complex
 single complex 41
 double complex 42
 functions
 function 100

For compound types (arrays, structures, etc.) there is a special kind of debug data
item (array, struct, etc.) to give details such as array bounds and field types. The
type code for compound types is negative, the negation of the (byte) offset of the
debug item from the start of the debugging area.

If a type has been given a name in a source program, it will give rise to a type
debugging data item which contains the name and a type word as defined above. If
necessary, there will also be a debugging data item, such as an array or struct
item, to define the type itself. In that case, the type word will refer to this item.
282

Code file formats
Set types in Pascal are not treated in detail: the only information recorded for them
is the total size occupied by the object in bytes. Neither are Pascal file variables
supported by the debugger, since their behaviour under debugger control is
unlikely to be helpful to the user.

Fortran CHARACTER types are supported by special kinds of debugging data item,
the format of which is specific to each Fortran compiler.

Representation of Source File Positions

Several of the debugging data items have a sourcepos field to identify a position in
the source file. This field contains a line number and character position within the
line packed into a single word. The most significant 10 bits encode the character
offset (0-based) from the start of the line and the least-significant 22 bits give the
line number.

Debugging Data Items in Detail

The Code and Length Field

The first word of each debugging data item contains the byte length of the item
(encoded in the most significant 16 bits), and a code identifying the kind of item
(in the least significant 16 bits). The defined codes are:

1 section

2 procedure/function definition

3 endproc

4 variable

5 type

6 struct

7 array

8 subrange

9 set

10 fileinfo

11 contiguous enumeration

12 discontiguous enumeration

13 procedure/function declaration

14 begin naming scope

15 end naming scope

16 bitfield
283

Debugging Data Items in Detail
The meaning of the second and subsequent words of each item is defined below.

If a debugger encounters a code it does not recognise, it should use the length
field to skip the item entirely. This discipline allows the debugging tables to be
extended without invalidating existing debuggers.

Text Names in Items

Where items include a string field, the string is packed into successive bytes
beginning with a length byte, and padded at the end to a word boundary with 0
bytes. The length of a string is in the range [0..255] bytes.

Offsets in File and Addresses in Memory

Where an item contains a field giving an offset in the debugging data area (usually
to address another item), this means a byte offset from the start of the debugging
data for the whole section (in other words, from the start of the section item).

When the same structure is used to map debugging data in memory, an offset field
may be used to hold a pointer to another debug item in memory, rather than the
offset of it in the debug area.

Section Items

A section item is the first item of each section of the debugging data. After its code
and length word it contains the fields listed below. First there are 4 flag bytes:

The following language byte codes are defined:

All other codes are reserved to ARM.

lang a byte identifying the source language

flags a byte describing the level of detail

unused

asdversion a byte version number of the debugging data

LANG_NONE 0 Low-level debugging data only

LANG_C 1 C source level debugging data

LANG_PASCAL 2 Pascal source level debugging data

LANG_FORTRAN 3 Fortran source level debugging data

LANG_ASM 4 ARM Assembler line number data
284

Code file formats
The flags byte uses the following mask values:

The asdversion byte should be set to 3, the version of this definition.

The flag bytes are followed by the following word-sized fields:

codestart and datastart are addresses, relocated by the linker. The fileinfo field,
nominally an offset, is also used as a pointer when this structure is mapped in
memory. The fileinfo field is 0 if no source file information is present.

The name field contains the program name for Pascal and Fortran programs. For C
programs it contains a name derived by the compiler from the root file name
(notionally a module name). In each case, the name is similar to a variable name in
the source language. For a low-level debugging section (language = 0), the field is
treated as a 4 byte integer giving the number of symbols following.

For linker-generated low-level debugging data, the fields have the following values:

1 debugging data contains line-number information

2 debugging data contains information about top-level variables

3 both of the above

codestart address of first instruction in this section

datastart address of start of static data for this section

codesize byte size of executable code in this section

datasize byte size of the static data in this section

fileinfo offset in the debugging area of the fileinfo item for this
section (0 if no fileinfo item present)

debugsize total byte length of debug data for this section

name or nsyms string or integer
(the first byte of string is the string’s length, followed by
a non-NULL-terminated string of characters with NULL
padding up to the next word boundary)

language 0

codestart Image$$RO$$Base

datastart Image$$RW$$Base

codesize Image$$RO$$Limit - Image$$RO$$Base

datasize Image$$RW$$Limit - Image$$RW$$Base

fileinfo 0

nsyms number of symbols in the following debugging data

debugsize total size of the low-level debugging data including the
size of this section item
285

Debugging Data Items in Detail
For linker-generated low-level debugging data, the section item is followed by
nsyms symbol items, each consisting of 2 words:

sym encodes an index into the string table in the 24 least significant bits, and the
following flag values in the 8 most significant bits:

Note that the linker reduces all symbol values to absolute values, so that the flag
values record the history, or origin, of the symbol in the image.

Immediately following the symbol table is the string table, in standard AOF format.
It consists of:

● a length word

● the strings themselves, each terminated by a NUL (0).

The length word includes the size of the length word, so no offset into the string
table is less than 4. The end of the string table is padded with NULs to the next
word boundary (so the length is a multiple of 4).

Procedure Items

A procedure item appears once for each procedure or function definition in the
source program. Any definitions within the procedure have their related debugging
data items between the procedure item and its matching endproc item. After its
code and length field, a procedure item contains the following word-sized fields:

sym flags + byte offset in string table of symbol name

value the value of the symbol

ASD_GLOBSYM 0 if the symbol is absolute

ASD_ABSSYM 0x01000000L if the symbol is global

ASD_TEXTSYM 0x02000000L if the symbol names code

ASD_DATASYM 0x04000000L if the symbol names data

ASD_ZINITSYM 0x06000000L if the symbol names 0-initialised data

type the return type if this is a function, else 0
(see Representation of Data Types on page 282)

args the number of arguments

sourcepos the source position of the procedure's start
(see Representation of Data Types on page 282)

startaddr address of 1st instruction of procedure prologue

entry address of 1st instruction of the procedure body
(see note below)

endproc offset of the related endproc item (in file) or pointer to
related endproc item (in memory)
286

Code file formats
The entry field addresses the first instruction following the procedure prologue.
That is, the first address at which a high-level breakpoint could sensibly be set. The
startaddr field addresses the start of the prologue. That is, the instruction at which
control arrives when the procedure is called.

Label Items

A label in a source program is represented by a special procedure item with no
matching endproc, (the endproc field is 0 to denote this). Pascal and Fortran
numerical labels are converted by their respective compilers into strings prefixed
by $n.

For Fortran, multiple entry points to the same procedure each give rise to a
separate procedure item, all of which have the same endproc offset referring to the
unique, matching endproc item.

Endproc Items

An endproc item marks the end of the debugging data items belonging to a
particular procedure. It also contains information relating to the procedure's
return. After its code and length field, an endproc item contains the following
word-sized fields:

fileentry offset of the file list entry for the source file (in file) or a
pointer to it (in memory)

name string
(the first byte of string is the string’s length, followed by a
non-NULL-terminated string of characters with NULL
padding up to the next word boundary)

sourcepos position in the source file of the procedure's end
(see Representation of Source File Positions on page 283)

endpoint address of the code byte after the compiled code for the
procedure

fileentry offset of the file-list entry for the procedure's end (in file)
or a pointer to it (in memory)

nreturns number of procedure return points (may be 0)

retaddrs array of addresses of procedure return code

type the return type if this is a function, else 0
(see Representation of Data Types on page 282)
287

Debugging Data Items in Detail
If the procedure body is an infinite loop, there will be no return point, so nreturns
will be 0. Otherwise each member of retaddrs should point to a suitable location at
which a breakpoint may be set ‘at the exit of the procedure’. When execution
reaches this point, the current stack frame should still be for this procedure.

Variable Items

A variable item contains debugging data relating to a source program variable, or a
formal argument to a procedure (the first variable items in a procedure always
describe its arguments). After its code and length field, a variable item contains the
following word-sized fields:

The following codes define the storage classes of variables:

The meaning of the location field of a variable item depends on the storage class;
it contains:

● an absolute address for static and external variables (relocated by the linker)

● a stack offset (an offset from the frame pointer) for automatic and var-type
arguments

● an offset into the argument list for Fortran arguments

● a register number for register variables, (the 8 floating point registers are
numbered 16..23).

type type of this variable
(see Representation of Data Types on page 282)

sourcepos the source position of the variable
(see Representation of Source File Positions on page 283)

storageclass a word encoding the variable's storage class

location see explanation below

name string
(the first byte of string is the string’s length, followed by
a non-NULL-terminated string of characters with NULL
padding up to the next word boundary)

1 external variables (or Fortran COMMON)

2 static variables private to one section

3 automatic variables

4 register variables

5 Pascal 'var' arguments

6 Fortran arguments

7 Fortran CHARACTER arguments
288

Code file formats
No account is taken of variables which ought to be addressed by +ve offsets from
the stack-pointer rather than -ve offsets from the frame-pointer.

The sourcepos field is used by the debugger to distinguish between different
definitions having the same name (e.g. identically named variables in disjoint
source-level naming scopes such as nested blocks in C).

Type Items

A type item is used to describe a named type in the source language (e.g. a typedef
in C). After its code and length field, a type item contains two word-sized fields:

Struct Items

A struct item is used to describe a structured data type (e.g. a struct in C or a record
in Pascal). After its code and length field, a struct item contains the following
word-sized fields:

Each struct field item has the following word-sized fields:

Union types are described by struct items in which all fields have 0 offsets.

C bit fields are not treated in full detail: a bit field is simply represented by an
integer starting on the appropriate word boundary (so that the word contains the
whole field).

type a type word (see Representation of Data Types on page 282)

name string
(the first byte of string is the string’s length, followed by
a non-NULL-terminated string of characters with NULL
padding up to the next word boundary)

fields the number of fields in the structure

size total byte size of the structure

fieldtable... an array of fields struct field items

offset byte offset of this field within the structure

type a type word (see Representation of Data Types on page 282)

name string
(the first byte of string is the string’s length, followed by
a non-NULL-terminated string of characters with NULL
padding up to the next word boundary)
289

Debugging Data Items in Detail
Array Items

An array item is used to describe a one-dimensional array. Multi-dimensional
arrays are described as ‘arrays of arrays’. Which dimension comes first is
dependent on the source language (which is different for C and Fortran). After its
code and length field, an array item contains the following word-sized fields:

If the size field is zero, debugger operations affecting the whole array, rather than
individual elements of it, are forbidden.

The following mask values are defined for the flags field:

A bound is described as undefined when no information about it is available.

A bound is described as constant when its value is known at compile time. In this
case, the corresponding bound field gives its value.

If a bound is described as variable, the offset field identifies a variable debug item
describing the location containing the bound. In a debug area in an object file, the
offset field contains the offset from the start of the debug area to the variable item;
in memory it contains a pointer to the corresponding variable item. Note that a
variable item may be used to describe a location known to the compiler, which
need not correspond to a source language variable.

size total byte size of the array

flags see below

basetype a type word (see Representation of Data Types on page 282)

lowerbound constant value or location of variable

upperbound constant value or location of variable

ARRAY_UNDEF_LBOUND 1 lower bound is undefined

ARRAY_CONST_LBOUND 2 lower bound is a constant

ARRAY_UNDEF_UBOUND 4 upper bound is undefined

ARRAY_CONST_UBOUND 8 upper bound is a constant

ARRAY_VAR_LBOUND 16 lower bound is a variable

ARRAY_VAR_UBOUND 32 upper bound is a variable
290

Code file formats
Subrange Items

A subrange item is used to describe a subrange typed in Pascal. It also serves to
describe enumerated types in C, and scalars in Pascal (in which case the base type
is understood to be an unsigned integer of appropriate size). After its code and
length field, a subrange item contains the following word-sized fields:

The sizeandtype field encodes the byte size of container for the subrange (1, 2 or 4)
in its least significant 16 bits, and a simple type code (see Representation of Data Types
on page 282) in its most significant 16 bits. The type code refers to the base type of
the subrange.

For example, a subrange 256..511 of unsigned short might be held in 1 byte.

Set Items

A set item is used to describe a Pascal set type. Currently, the description is only
partial. After its code and length field, a set item consists of a single word:

Enumeration Items

An enumeration item describes a Pascal or C enumerated type. After its code and
length word, the description of a ‘contiguous enumeration’ contains the following
word-sized fields

sizeandtype see below

lb low bound of subrange

hb high bound of subrange

size byte size of the object

type a type word describing the type of the container for the
enumeration (see Representation of Data Types on page 282)

count the cardinality of the enumeration

base the first (lowest) value (may be -ve)

nametable a character array containing ‘count’ names
(see Text Names in Items on page 284)
(the first byte of name is the name’s length, followed by a
non-NULL-terminated string of characters with NULL
padding up to the next word boundary)
291

Debugging Data Items in Detail
The description of a discontiguous enumeration (such as the C enumeration enum
bits {bit0=1, bit1=2, bit2=4, bit3=8, bit4=16}) contains the following fields after its
code and length word:

Each nametable entry has the following format (which is variable in length):

Function Declaration Items

After its code and length word, a function declaration item contains the following
fields:

Each argument description item contains the following:

An argument descriptor need not be named; in this case the length of the name is
zero, and the name field is a single zero word.

Begin and End Naming Scope Items

These debug items are used to mark the beginning and end of a naming scope.
They must be properly nested in the debug area.

type as above

count as above

nametable a table of count (value, name) pairs

val a word describing the enumerated value (1/2/4/8/16 in the
example)

name the name of the enumerated element (may be several
words long)
(the first byte of name is the name’s length, followed by a
non-NULL-terminated string of characters with NULL
padding up to the next word boundary)

type a type word (see Representation of Data Types on page 282)
describing the return type of the function or procedure

argcount the number of arguments to the function

args a sequence of argcount argument description items

type a type word (see Representation of Data Types on page 282)
describing the type of the argument

name the name of the argument (may be several words)
(the first byte of name is the name’s length, followed by a
non-NULL-terminated string of characters with NULL
padding up to the next word boundary)
292

Code file formats
In each case, after the code and length word, there is one word-sized field:

Bitfield Items

A bitfield item describes an individual bitfield member of a C structure. After its
code and length word, a bitfield item contains the following fields:

The offset is the offset of the least-significant bit of the bitfield from the least
significant bit of its container.

Fileinfo Items

A fileinfo item appears once per section, after all other debugging data items. If the
fileinfo item is too large for its length to be encoded in 16 bits, its length field must
be written as 0 (since this is the last item in a section and the section header
contains the length of the whole section, the length field is strictly redundant).

Each source file is described by a sequence of fragments. Each fragment describes
a contiguous region of the file, within which the addresses of compiled code
increase monotonically with source file position. The order in which fragments
appear in the sequence is not necessarily related to the source file positions to
which they refer.

Note that for compilations which make no use of the #include facility, the list of
fragments may have only one entry, and all line-number information can be
contiguous.

codeaddress address of the start/end of scope (determined by the code
word)

type a type word describing the type of the bitfield (see
Representation of Data Types on page 282)

container a type word describing the type of the container for the
bitfield

size a byte giving the size of the bitfield, in bits

offset a byte giving the offset of the bitfield within the container

zero 2 zero bytes
293

Debugging Data Items in Detail
After its code and length word, the fileinfo item is a sequence of file entry items
with the following format:

If present, the date field contains the number of seconds since the beginning of
1970 (the Unix date origin).

Following the final file entry item, is a single 0 word marking the end of the
sequence.

The fragment data is a word giving the number of following fragments followed by
a sequence of fragment items:

Each fragment item consists of 5 words, followed by a sequence of byte pairs and
half word pairs, formatted as follows:

Each lineinfo item describes a source statement and consists of a pair of
(unsigned) bytes, possibly followed by a two or three (unsigned) half words, (each
half word has the byte ordering appropriate to the target memory system's
endian-ness or byte sex).

The short form (pair of bytes) lineinfo item is as follows:

len length of this entry in bytes (including the length of the
following fragments)

date date and time when the file was last modified may be 0,
indicating not available, or unused)

filename string (or "" if the name is not known)
(the first byte of string is the string’s length, followed by
a non-NULL-terminated string of characters with NULL
padding up to the next word boundary)

fragment data see below

n number of fragments following

fragments... n fragment items

size length of this fragment in bytes (including length of
following lineinfo items)

firstline linenumber

lastline linenumber

codestart pointer to the start of the fragment's executable code

codesize byte size of the code in the fragment

lineinfo... a variable number of bytes matching line numbers to
code addresses

codeinc # bytes of code generated by this statement

lineinc # source space occupied by this statement
294

Code file formats
lineinc describes how to calculate the source position (line, column) of the next
statement from the source position of this one:

If lineinc is in the range 0 ≤ and < 64, the new position is (line+lineinc,1).
If lineinc ≥ 64, the new position is (line, column+lineinc -64).

The number of bytes of code generated for a statement may be zero, provided the
line increment is non-zero (such an item may describe a block end or block start,
for example).

It is not possible to describe a statement which generates no code and no line
number increment, as that encoding is used as an escape to the long form lineinfo
items described below.

If codeinc is greater than 255, or lineinc is required to describe a line number
change greater than 63 or a column change greater than 191, then both bytes are
written to describe 0 increments, and the real values are given in the following two
or three (unsigned) half words. (Note that there are two ways to describe 0
increments: 0 lines and 0 columns, which serves to discriminate between the two
half word and three half word forms). If the starting column for the next statement
is 1, the two half word form is used, which in effect is a triple of half words as
follows:

Note that the order of the lineinc and codeinc half words is the reverse of the
corresponding bytes.

If the starting column for the next statement is not 1, the three half word form is
used, which in effect is a quadruple of half words, as follows:

Note as above that the order of the lineinc and codeinc half words is the reverse of
the corresponding bytes. Note also that the column item here is the absolute
column number for the next statement, and not an increment as in the two byte
form.

zero 2 zero bytes

lineinc # source lines occupied by this statement

codeinc # bytes of code generated by this statement

codeinc = 0, lineinc = 64

lineinc # source lines occupied by this statement

codeinc # bytes of code generated by this statement

newcol starting column for the next statement
295

Debugging Data Items in Detail
(This encoding of lineinfo items is an incompatible change from the previous
format (version 2): in that format, lineinc in a two byte lineinfo item always
describes a line increment, and accordingly, there is no four half word form.
Programs interpreting asd tables should interpret lineinfo items differently
according to the table format in the section item.)
296

Appendix G: ARM procedure call
standard

his Appendix relates to the implementation of compiler code-generators and

language run-time library kernels for the Advanced RISC Machine (ARM) but is

also a useful reference when interworking assembly language with high level
language code.

The reader should be familiar with the ARM’s instruction set, floating-point
instruction set and assembler syntax before attempting to use this information to
implement a code-generator. In order to write a run-time kernel for a language
implementation, additional information specific to the relevant ARM operating
system will be needed (some information is given in the sections describing the
standard register bindings for this procedure-call standard).

The main topics covered in this Appendix are the procedure call and stack
disciplines. These disciplines are observed by Acorn’s C language implementation
for the ARM and, eventually, will be observed by other high level language
compilers too. Because C is the first-choice implementation language for RISC OS
applications, the utility of a new language implementation for the ARM will be
related to its compatibility with Acorn’s implementation of C.

At the end of this document are several examples of the usage of this standard,
together with suggestions for generating effective code for the ARM.

The version of APCS described in this appendix is the version supported by the C
compiler and other tools. ARM Limited have defined a newer version called
AAPCS, details of which are available from the ARM web site, but this is not
currently supported by the RISC OS tools.

The purpose of APCS

The ARM Procedure Call Standard (APCS) is a set of rules which regulate and
facilitate calls between separately compiled or assembled program fragments.

The APCS defines:

● constraints on the use of registers

● stack conventions

T

297

The purpose of APCS
● the format of a stack-based data structure, used by stack tracing programs to
reconstruct the sequence of outstanding calls (i.e. nested function calls
awaiting completion)

● the passing of machine-level arguments, and the return of machine-level
results at externally visible function/procedure calls

● support for the ARM shared library mechanism; a standard way for shared
(reentrant) code to address the static data of its clients.

Since the ARM CPU is used in a wide variety of systems, the APCS is not a single
standard, but a consistent family of standards. See APCS variants on page 307 for
details of the variants in the family. Implementors of run-time systems, operating
systems, embedded control monitors, etc., must choose the variant(s) most
appropriate to their requirements.

Naturally, there can be no binary compatibility between program fragments which
conform to different members of the APCS family. Those concerned with long-term
binary compatibility must choose their options carefully.

Note: ‘function’ is used to mean function, procedure or subroutine.

Design criteria

Throughout its history, the APCS has compromised between fastest, smallest and
easiest to use.

The criteria considered to be important are:

● Function call should be fast and it should be easy for compilers to optimise
function entry sequences.

● The function call sequence should be as compact as possible.

● Extensible stacks and multiple stacks should be accommodated.

● The standard should encourage the production of reentrant code, with
writable data separated from code.

● The standard should be simple enough to be used by assembly language
programmers, and should support simple approaches to link editing,
debugging and run-time error diagnosis.

Overall, compact code and a clear definition have been ranked most highly, with
simplicity and ease of use ahead of performance in matters of fine detail where the
impact on performance is small.
298

ARM procedure call standard
The ARM Procedure Call Standard

This section defines the ARM Procedure Call Standard.

A program fragment which conforms to the APCS while making a call to an external
function (one which is visible between compilation units) is said to be conforming. A
program which conforms to the APCS at all instants of execution is said to be
‘strictly conforming’ or to ‘conform strictly’.

Note: In general, compiled code is expected to be strictly conforming; hand-written
code merely conforming.

Whether or not (and when) program fragments for a particular ARM-based
environment are required to conform strictly to the APCS is part of the definition of
that environment.

In the following sections, clauses following ‘shall’ and ‘shall not’ are obligations
which must be met in order to conform to the APCS.

Register names

The ARM has 15 visible general registers, a program counter register and 8
floating-point registers.

In non-user machine modes, some general registers are shadowed. In all modes,
the availability of the floating-point instruction set depends on the processor
model, hardware and operating system.
299

The ARM Procedure Call Standard
General registers

The 16 integer registers are divided into 3 sets:

● 4 argument registers which can also be used as scratch registers or as
caller-saved register variables;

● 5 callee-saved registers, conventionally used as register variables;

● 7 registers which have a dedicated role, at least some of the time, in at least
one variant of APCS-3 (see APCS variants on page 307).

The 5 frame registers fp, ip, sp, lr and pc have dedicated roles in all variants of the
APCS.

The ip register has a dedicated role only during function call; at other times it may
be used as a scratch register.

Note: Conventionally, ip is used by compiler code generators as the/a local code
generator temporary register.

There are dedicated roles for sb and sl in some variants of the APCS; in other
variants they may be used as callee-saved registers.

The APCS permits lr to be used as a register variable when not in use during a
function call. It further permits an ARM system specification to forbid such use in
some, or all, non-user ARM processor modes.

Name Number APCS Role

a1 0 argument 1 / integer result / scratch register
a2 1 argument 2 / scratch register
a3 2 argument 3 / scratch register
a4 3 argument 4 / scratch register

v1 4 register variable
v2 5 register variable
v3 6 register variable
v4 7 register variable
v5 8 register variable

sb/v6 9 static base / register variable
sl/v7 10 stack limit / stack chunk handle / reg. variable
fp 11 frame pointer
ip 12 scratch register / new-sb in inter-link-unit calls
sp 13 lower end of current stack frame
lr 14 link address / scratch register
pc 15 program counter
300

ARM procedure call standard
Floating point registers

Each ARM floating-point (FP) register holds one FP value of single, double,
extended or internal precision. A single-precision value occupies 1 machine word;
a double-precision value 2 words; an extended precision value occupies 3 words,
as does an internal precision value.

The floating-point (FP) registers are divided into two sets, analogous to the
subsets a1-a4 and v1-v5/v7 of the general registers:

● registers f0-f3 need not be preserved by called functions; f0 is the FP result
register and f0-f3 may hold the first four FP arguments (see Data representation
and argument passing on page 305 and APCS variants on page 307)

● registers f4-f7, the so called ‘variable’ registers, preserved by callees.

The Stack

The stack is a singly-linked list of ‘activation records’, linked through a ‘stack
backtrace data structure’ (see below), stored at the high-address end of each
activation record.

The stack shall be readable and writable by the executing program.

Each contiguous chunk of the stack shall be allocated to activation records in
descending address order. At all instants of execution, sp shall point to the lowest
used address of the most recently allocated activation record.

There may be multiple stack chunks, and there are no constraints on the ordering
of these chunks in the address space.

Associated with sp is a possibly-implicit stack chunk limit, below which sp shall
not be decremented (see APCS variants on page 307).

At all instants of execution, the memory between sp and the stack chunk limit shall
contain nothing of value to the executing program: it may be modified
unpredictably by the execution environment.

Name Number APCS Role

f0 0 FP argument 1 / FP result / FP scratch register

f1 1 FP argument 2 / FP scratch register

f2 2 FP argument 3 / FP scratch register

f3 3 FP argument 4 / FP scratch register

f4 4 floating point register variable

f5 5 floating point register variable

f6 6 floating point register variable

f7 7 floating point register variable
301

The ARM Procedure Call Standard
The stack chunk limit is said to be implicit if chunk overflow is detected and
handled by the execution environment. Otherwise it is explicit.

If the stack chunk limit is implicit, sl may be used as v7, an additional callee-saved
variable register.

If the conditions of the remainder of this subsection hold at all instants of
execution, then the program conforms strictly to the APCS; otherwise, if they hold
at and during external (inter-compilation-unit-visible) function calls, the program
merely conforms to the APCS.

If the stack chunk limit is explicit, then:

● sl shall point at least 256 bytes above it

● sl shall identify the current stack chunk in a system-defined manner

● at all times, sl shall identify the same chunk as sp points into.

Note: sl ≥ stack chunk limit + 256 allows the most common limit checks to be made
very cheaply during function entry.

This final requirement implies that on changing stack chunks, sl and sp must be
loaded simultaneously by means of an:

 LDM ..., {..., sl, sp}.

In general, this means that return from a function executing on an extension chunk,
to one executing on an earlier-allocated chunk, should be via an intermediate
function invocation, specially fabricated when the stack was extended.

The values of sl, fp and sp shall be multiples of 4.

The stack backtrace data structure

The value in fp shall be zero or shall point to a list of stack backtrace data
structures which partially describe the sequence of outstanding function calls.

If this constraint holds when external functions are called, the program is
conforming; if it holds at all instants of execution, the program is strictly
conforming).
302

ARM procedure call standard
The stack backtrace data structure has the format shown below:

The above picture shows between four and twenty-six words, with those words
higher on the page being at higher addresses in memory. The values shown inside
the large brackets are optional, and their presence need not imply the presence of
any other. The floating point values are stored in an internal format, and occupy
three words each.

Function invocations and backtrace structures

If function invocation A calls function B, then A is called a direct ancestor of the
invocation of B. If invocation A[1] calls invocation A[2] calls... calls B, then each of
the A[i] is an ancestor of B and invocation A[i] is ‘more recent’ than invocation A[j]
if i > j.

The return fp value shall be 0, or shall be a pointer to a stack backtrace data
structure created by an ancestor of the function invocation which created the
backtrace structure pointed to by fp. No more recent ancestor shall have created a
backtrace structure.

Note: There may be any number of tail-called invocations between invocations
which create backtrace structures.

The return link value, return sp value and return fp value are, respectively, the
values to restore to pc, sp and fp at function exit.

fp points to here: save code pointer

return link value

return sp value

return fp value

 saved v6 value

 saved v5 value

 saved v4 value

 saved v3 value

 saved v2 value

 saved v1 value

 saved a4 value

 saved a3 value

 saved a2 value

 saved a1 value

 saved f7 value

 saved f6 value

 saved f5 value

 saved f4 value

[fp]

[fp, #-4]

[fp, #-8]

[fp, #-12]

three words

three words

three words

three words

Optional
values
303

The ARM Procedure Call Standard
In the 32-bit PC variant of the APCS, the save code pointer shall point twelve bytes
beyond the start of the sequence of instructions that created the stack backtrace
data structure.

In the 26-bit PC variant of the APCS, the save code pointer, when cleared of PSR
and mode bits, shall point twelve bytes beyond the start of the sequence of
instructions that created the stack backtrace data structure.

Control arrival

At the instant when control arrives at the target function:

● pc contains the address of an entry point to the target function
(reentrant functions may have two entry points).

● lr shall contain the value to restore to pc on exit from the function (the return
link value – see The stack backtrace data structure on page 302)

Note: In 26-bit variants of the APCS, lr contains the PC + PSR value to restore
to pc on exit from the function (see APCS variants on page 307)

● sp shall point at or above the current stack chunk limit; if the limit is explicit, it
shall point at least 256 bytes above it (see The Stack on page 301)

● fp shall contain 0 or shall point to the most recently created stack backtrace
structure (see The stack backtrace data structure on page 302)

● the space between sp and the stack chunk limit shall be readable, writable
memory which can be used by the called function as temporary workspace, and
overwritten with any values before the function returns (see The Stack on
page 301)

● arguments shall have been marshalled as described below.

If the target function is reentrant (see The Stack on page 301) then it has two entry
points and control arrives:

● at the ‘intra-link-unit entry point’ if the caller has been directly linked with the
callee

● at the ‘inter-link-unit entry point’ if the caller has been separately linked with a
‘stub’ of the callee.

Note: Sometimes the two entry points are at the same address; usually they will be
separated by a single instruction.

On arrival at the intra-link-unit entry point, sb shall identify the static data of the
link unit which contains both the caller and the callee.

On arrival at the inter-link-unit entry point, ip shall identify the static data of the
link unit containing the target function, or the target function shall make neither
direct nor indirect use of static data.
304

ARM procedure call standard
In practice this usually means the callee must be a leaf function making no direct
use of static data.

The way in which sb ‘identifies’ the static data of a link unit is not specified by the
APCS.

If the call is by tail continuation, ‘calling function’ means that which would be
returned to, were the tail continuation converted to a return).

If code is not required to be reentrant or sharable then sb may be used as v6, an
additional variable register.

Data representation and argument passing

Argument passing in the APCS is defined in terms of an ordered list of
machine-level values passed from the caller to the callee, and a single word or
floating point result passed back from the callee to the caller. Each value in the
argument list shall be:

● a word-sized, integer value

● a floating point value (of size 1, 2 or 3 words).

A callee may corrupt any of its arguments, howsoever passed.

Note: The APCS does not define the layout in store of records, arrays and so forth,
used by ARM-targeted compilers for C, Pascal, Fortran, etc.; nor does it prescribe
the order in which language-level arguments are mapped into their machine-level
representations. In other words, the mapping from language-level data types, and
arguments to APCS words is defined by each language implementation, not by the
APCS. Indeed, there is no formal reason why two ARM-targeted implementations
of the same language should not use different mappings and, hence, not support
cross-calling. Obviously, it would be very unhelpful to stand by this formal position
so implementors are encouraged to adopt not just the letter of the APCS but also
the natural mappings of source language objects into argument words. Guidance
about this is given in C Language calling conventions on page 309.

At the instant control arrives at the target function, the argument list shall be
allocated as follows:

● In APCS variants which support the passing of floating-point arguments in
floating-point registers (see APCS variants on page 307), the first four
floating-point arguments (or fewer if the number of floating-point arguments
is less than four) shall be in machine registers f0-f3.

● The first four remaining argument words (or fewer if there are fewer than four
argument words remaining in the argument list) shall be in machine registers
a1-a4.
305

The ARM Procedure Call Standard
● The remainder of the argument list (if any) shall be in memory, at the
location addressed by sp and higher-addressed words thereafter.

A floating-point value not passed in a floating-point register is treated as 1, 2 or 3
integer values, as appropriate to its precision.

Control return

When the return link value for a function call is placed in the pc:

● sp, fp, sl/v7, sb/v6, v1-v5, and f4-f7 shall contain the same values as they
did at the instant of control arrival

● if the function returns a simple value of size one word or less, then that value
shall be in a1

Note: a language implementation is not obliged to consider all single-word
values simple. See C Language calling conventions on page 309)

● if the function returns a simple floating point value then that value shall be in
f0.

The values of ip, lr, a2-a4, f1-f3 and any stacked arguments are undefined.

The definition of control return means that this is a ‘callee saves’ standard.

Note: In 32-bit ARM modes, the caller’s PSR flags are not preserved across a
function call. In 26-bit ARM modes, the caller’s PSR flags are naturally reinstated
when the return link pointer is placed in pc. Note that the N, Z, C and V flags from
lr at the instant of entry must be reinstated; it is not sufficient merely to preserve
the PSR across the call. Consider, a function ProcA which tail continues to ProcB
as follows:

CMP a1, #0
MOVLT a2, #255
MOVGE a2, #0
B ProcB

If ProcB merely preserves the flags it sees on entry, rather than restoring those
from lr, the wrong flags may be set when ProcB returns direct to ProcA’s caller.
See APCS variants on page 307).
306

ARM procedure call standard
APCS variants

There are, currently, 2 x 2 x 2 x 2 = 16 APCS variants, derived from four independent
choices.

The first choice – 32-bit PC vs 26-bit PC – is determined by whether it is necessary
to support 26-bit CPU modes.

The second choice – implicit vs explicit stack-limit checking – is fixed by a
combination of memory-management hardware and operating system software: if
your ARM-based environment supports implicit stack-limit checking then use it;
otherwise use explicit stack-limit checking.

The third choice – of how to pass floating-point arguments – supports efficient
argument passing in both of the following circumstances:

● the floating point instruction set is emulated by software and floating point
operations are dynamically very rare

● the floating point instruction set is supported by hardware or floating point
operations are dynamically common.

In each case, code conforming to one variant is not compatible with code
conforming to the other.

Only the choice between reentrant and non-reentrant variants is a true user level
choice. Further, as the alternatives are compatible, each may be used where
appropriate.

32-bit PC vs 26-bit PC

Older ARM CPUs and the 26-bit compatibility mode of newer CPUs use a 24-bit,
word-address program counter, and pack the 4 status flags (NZCV) and 2
interrupt-enable flags (IF) into the top 6 bits of r15, and the 2 mode bits (m0, m1)
into the least-significant bits of r15. Thus r15 implements a combined PC + PSR.

Newer ARM CPUs use a 32-bit program counter (in r15) and a separate PSR.

In 26-bit CPU modes, the PC + PSR is written to r14 by an ARM branch with link
instruction, so it is natural for the APCS to require the reinstatement of the caller’s
PSR at function exit (a caller’s PSR is preserved across a function call).

In 32-bit CPU modes this reinstatement would be unacceptably expensive in
comparison to the gain from it, so the APCS does not require it and a caller’s PSR
flags may be corrupted by a function call.
307

APCS variants
Implicit vs explicit stack-limit checking

ARM-based systems vary widely in the sophistication of their memory
management hardware. Some can easily support multiple, auto-extending stacks,
while others have no memory management hardware at all.

Safe programming practices demand that stack overflow be detected.

The APCS defines conventions for software stack-limit checking sufficient to
support efficiently most requirements (including those of multiple threads and
chunked stacks).

The majority of ARM-based systems are expected to require software stack-limit
checking.

Floating-point arguments in floating-point registers

Historically, many ARM-based systems have made no use of the floating point
instruction set, or they used a software emulation of it.

On systems using a slow software emulation and making little use of
floating-point, there is a small disadvantage to passing floating-point arguments
in floating-point registers: all variadic functions (such as printf) become slower,
while only function calls which actually take floating-point arguments become
faster.

If your system has no floating-point hardware and is expected to make little use of
floating point, then it is better not to pass floating-point arguments in
floating-point registers. Otherwise, the opposite choice is best.

Reentrant vs non-reentrant code

The reentrant variant of the APCS supports the generation of code free of
relocation directives (position independent and addressing all data (indirectly) via
a static base register). Such code is ideal for placement in ROM and can be
multiply threaded (shared between several client processes).

In general, code to be placed in ROM or loaded into a shared library is expected to
be reentrant, while applications are expected not to be.

See also C Language calling conventions on page 309.

APCS-2 compatibility

APCS-2 – the second definition of The ARM Procedure Call Standard – is described
in the RISC OS Programmer’s Reference Manual.

APCS-R (APCS-2 for Acorn’s RISC OS) is the following variant of APCS-3:

● 26-bit PC
308

ARM procedure call standard
● explicit stack-limit checking

● no passing of floating-point arguments in floating-point registers

● non-reentrant code

with the Acorn-specific constraints on the use of sl noted in APCS-2.

APCS-U (APCS-2 for Acorn’s RISCiX) is the following variant of APCS-3:

● 26-bit PC

● implicit stack-limit checking (with sl reserved to Acorn)

● no passing of floating-point arguments in floating-point registers

● non-reentrant code.

The (in APCS-2) obsolescent APCS-A has no equivalent in APCS-3.

C Language calling conventions

Argument representation

A floating point value occupies 1, 2, or 3 words, as appropriate to its type. Floating
point values are encoded in IEEE 754 format, with the most significant word of a
double having the lowest address.

The C compiler widens arguments of type float to type double to support
inter-working between ANSI C and classic C.

Char, short, pointer and other integral values occupy 1 word in an argument list.
Char and short values are widened by the C compiler during argument marshalling.

On the ARM, characters are naturally unsigned. In -pcc mode, the C compiler treats
a plain char as signed, widening its value appropriately when used as an argument,
(classic C lacks the signed char type, so plain chars are considered signed; ANSI C
has signed, unsigned and plain chars, the third, conventionally reflecting the
natural signedness of characters).

A structured value occupies an integral number of integer words (even if it contains
only floating point values).

Argument list marshalling

Argument values are marshalled in the order written in the source program.

If passing floating-point (FP) arguments in FP registers, the first 4 FP arguments are
loaded into FP registers.
309

C Language calling conventions
The first 4 of the remaining argument words are loaded into a1-a4, and the
remainder are pushed on to the stack in reverse order (so that arguments later in
the argument list have higher addresses than those earlier in the argument list). As
a consequence, a FP value can be passed in integer registers, or even split between
an integer register and the stack.

This follows from the need to support variadic functions, (functions having a
variable number of arguments, such as printf, scanf, etc.). Alternatives which avoid
the passing of FP values in integer registers require that a caller know that a
variadic function is being called, and use different argument marshalling
conventions for variadic and non-variadic functions.

Non-simple value return

A non-simple type is any non-floating-point type of size greater than 1 word
(including structures containing only floating-point fields), and certain 1 word
structured types.

A structure is called integer-like if its size is less than or equal to one word, and the
offset of each of its addressable sub-fields is zero. An integer-like structured result
is considered simple and is returned in a1.

struct {int a:8, b:8, c:8, d:8;} and
union {int i; char *p;} are both integer-like;

struct {char a; char b; char c; char d;} is not.

A multi-word or non-integer-like result is returned to an address passed as an
additional first argument to the function call. At the machine level:

 TT tt = f(x, ...);

is implemented as:

 TT tt; f(&tt, x, ...);

Function entry

A complete discussion of function entry is complex; a few of the most important
issues and special cases are discussed here.

The important issues for function entry are:

● establishing the static base (if the function is to be reentrant)

● creating the stack backtrace data structure (if needed)

● saving the floating point variable registers (if required)

● checking for stack overflow (if the stack chunk limit is explicit).

A function is called leaf if its body contains no function calls.
310

ARM procedure call standard
If function F calls function G immediately before an exit from F, the call- exit
sequence can often be replaced instead by a return to G. After this transformation,
the return to G is called a tail call or tail continuation.

There are many subtle difficulties with tail continuations. Suppose stacked
arguments are unstacked by callers (almost mandatory for variadic callees), then G
cannot be directly tail-called if G itself takes stacked arguments. This is because
there is no return to F to unstack them. Of course, if this call to G takes fewer
arguments than the current call to F, then some of F’s stacked arguments can be
replaced by G’s stacked arguments. However, this can be hard to assert if F is
variadic. More straightforwardly, there may be no tail-call of G if the address of any
of F’s arguments or local variables has ‘leaked out’ of F. This is because on return to
G, the address may be invalidated by adjustment of the stack pointer. In general,
this precludes tail calls if any local variable or argument has its address taken.

If a function is a leaf function, or all function calls from its body are tail calls and,
in both cases, the function uses no v-registers (v1-v7) then the function need
create no stack backtrace structure (such functions will also be termed ‘frameless’).

A leaf function which makes no use of static data need not establish a static base.

Function entry - establishing the static base

The ARM shared library mechanism supports both the direct linking together of
functions into a link unit, and the indirect linking of functions with the stubs of
other link units. Thus a reentrant function can be entered directly via a call from
the same link unit (an intra-link-unit call), or indirectly via a function pointer or
direct call from another link unit (an inter-link-unit call).

The general scheme for establishing the static base in reentrant code is:

 intra MOV ip, sb ; intra link unit (LU) calls target here
 inter ; inter-LU calls target here, having loaded
 ; ip via an inter-LU or fn-pointer veneer.

 <create backtrace structure, saving sb>

 MOV sb, ip ; establish sb for this LU

 <rest of entry>

Code which is not required to be reentrant need not use a static base. Code which
is reentrant is marked as such, which allows the linker to create the inter-LU
veneers needed between independent reentrant link units, and between reentrant
and non-reentrant code.

Function entry - creating the stack backtrace structure

For non-reentrant, non-variadic functions the stack backtrace structure can be
created in just 3 instructions, as follows:
311

C Language calling conventions
 MOV ip, sp ; save current sp, ready to save as old sp
 STMFD sp!, {a1-a4, v1-v5, sb, fp, ip, lr, pc} ; as needed
 SUB fp, ip, #4

Each argument register a1-a4 need only be saved if a memory location is needed
for the corresponding parameter (because it has been spilled by the register
allocator or because its address has been taken).

Each of the registers v1-v7 need only be saved if it used by the called function. The
minimum set of registers to be saved is {fp, old-sp, lr, pc}.

A reentrant function must avoid using ip in its entry sequence:

 STMFD sp!, {sp, lr, pc}
 STMFD sp!, {a1-a4, v1-v5, sb, fp} ; as needed
 ADD fp, sp, #8+4*|{a1-a4, v1-v5, sb, fp}| ; as used above

sb (aka v6) must be saved by a reentrant function if it calls any function from
another link unit (which would alter the value in sb). This means that, in general,
sb must be saved on entry to all non-leaf, reentrant functions.

For variadic functions the entry sequence is more complicated again. Usually, it
will be desired or required to make a contiguous argument list on the stack. For
non-reentrant variadic functions this can be done by:

 MOV ip, sp ; save current sp, ready to save as old sp
 STMFD sp!, {a1-a4} ; push arguments on stack
 SFMFD f0, 4, [sp] ; push FP arguments on stack...
 STMFD sp!, {v1-v6, fp, ip, lr, pc} ; as needed
 SUB fp, ip, #20 ; if all of a1-a4 pushed...

It is not necessary to push arguments corresponding to fixed parameters (though
saving a1-a4 is little more expensive than just saving, say, a3-a4).

If floating point arguments are not being passed in floating point registers then
there is no need for the SFMFD. SFM is not supported by the issue-1 floating-point
instruction set and must be simulated by 4 STFEs. See Function entry - saving and
restoring floating point registers below.

For reentrant variadic functions, the requirements are yet more complicated and
the sequence becomes less elegant.

Function entry - saving and restoring floating point registers

The issue-2 floating-point instruction set defines two new instructions, Store
Floating Multiple (SFM) and Load Floating Multiple (LFM), for saving and
restoring the floating-point registers, as follows:

● SFM and LFM are exact inverses;
312

ARM procedure call standard
● a SFM will never trap, whatever the IEEE trap mode and the value transferred
(unlike a STFE which can trap on storing a signalling NaN);

● SFM and LFM transfer 3-word internal representations of floating point values
which vary from implementation to implementation, and which, in general, are
unrelated to any of the supported IEEE representations;

● any 1-4, cyclically contiguous floating-point registers can be transferred by
SFM/LFM (e.g. {f4-f7}, {f6, f7, f0}, {f7, f0}, {f1}).

On function entry, a typical use of SFM might be as follows:

 SFMFD f4, 4, [sp]! ; save f4-f7 on a Full Descending stack,
 ; adjusting sp as values are pushed.

On function exit, the corresponding sequence might be as follows:

 LFMEA f4, 4, [fp, #-N] ; restore f4-f7; fp-N points just
 ; above the floating point save area.

On function exit, sp-relative addressing may be unavailable if the stack has been
discontiguously extended.

In issue-1 instruction set compatibility modes, SFM and LFM have to be simulated
using sequences of STFEs and LDFEs.

Function entry - checking for stack limit violations

In some environments, stack overflow detection will be implicit: an off stack
reference will cause an address error or memory fault which may, in turn, cause
stack extension or program termination.

In other environments, the validity of the stack must be checked on function entry
and, perhaps at other times. There are three cases:

● the function uses 256 bytes or less of stack space

● the function uses more than 256 bytes of stack space, but the amount is
known and bounded at compile time

● the function uses an amount of stack space unknown until run time.

The third case does not arise in C, save with stack-based implementations of the
non-standard, BSD-Unix alloca() function. The APCS does not support alloca() in a
straightforward manner.

In Modula-2, Pascal and other languages there may be arrays created on block
entry or passed as open array arguments, the size of which is unknown until run
time. These are located in the callee’s stack frame, so impact stack limit checking.
In practice, this adds little complication, as discussed in Stack limit checking -
vari-sized frames on page 314.
313

C Language calling conventions
The check for stack limit violation is made at the end of the function entry
sequence, by which time ip is available as a work register. If the check fails, a
standard run-time support function (‘__rt_stkovf_split_small’ or
‘__rt_stkovf_split_big’) is called. Each environment which supports explicit stack
limit checking must provide these functions, which can do one of the following:

● terminate execution

● extend the existing stack chunk, decrementing sl

● allocate a new stack chunk, resetting sp and sl to point into it, and
guaranteeing that an immediate repeat of the limit check will succeed.

Stack limit checking - small, fixed frames

For frames of 256 bytes or less the limit check is as follows:

 <create stack backtrace structure>

 CMP sp, sl
 BLMI |__rt_stkovf_split_small|
 SUB sp, sp, #<size of locals> ; <= 256, by hypothesis

This adds 2 instructions and, in general, only 2 cycles to function entry.

After a call to __rt_stkovf_split_small, fp and sp do not, necessarily, point into the
same stack chunk. Arguments passed on the stack must be addressed by offsets
from fp, not by offsets from sp.

Stack limit checking - large, fixed frames

For frames bigger than 256 bytes, the limit check proceeds as follows:

 SUB ip, sp, #FrameSizeBound ; can be done in 1 instr
 CMP ip, sl
 BLMI |__rt_stkovf_split_big|
 SUB sp, sp, #InitFrameSize ; may take more than 1 instr

FrameSizeBound can be any convenient constant at least as big as the largest
frame the function will use. Note that functions containing nested blocks may use
different amounts of stack at different instants during their execution.

InitFrameSize is the initial stack frame size: subsequent adjustments within the
called function require no limit check.

After a call to __rt_stkovf_split_big, fp and sp do not, necessarily, point into the
same stack chunk. Arguments passed on the stack must be addressed by offsets
from fp, not by offsets from sp.

Stack limit checking - vari-sized frames

(For Pascal-like languages).
314

ARM procedure call standard
The handling of frames the size of which is unknown at compile time, is identical to
the handling of large frames, save that:

● the computation of the proposed new stack pointer is more complicated,
involving arguments to the function itself

● the addressing of the vari-sized objects is more complicated than the
addressing of fixed size objects need be

● the vari-sized objects have to be initialised by the called function.

The general scheme for stack layout in this case is as follows:

Objects notionally passed by value are actually passed by reference and copied by
the callee.

The callee addresses the copied objects via pointers located in the fixed size part of
the stack frame, immediately above sp. These can be addressed relative to sp. The
original arguments are all addressable relative to fp.

After a call to __rt_stkovf_split_big, fp and sp do not, necessarily, point into the
same stack chunk. Arguments passed on the stack must be addressed by offsets
from fp, not by offsets from sp.

If a nested block extends the stack by an amount which can’t be known until run
time then the block entry must include a stack limit check.

Function exit

A great deal of design effort has been devoted to ensuring that function exit can
usually be implemented in a single instruction (this is not the case if floating-point
registers have to be restored). Typically, there are at least as many function exits as
entries, so it is always advantageous to move an instruction from an exit sequence

Stack-based arguments

Stack backtrace data structure
... reg save area...

Area for vari-sized objects,
passed by value or created on
block entry

Fixed size remainder of frame

fp points here

sp points here
315

Some examples
to an entry sequence, (Fortran may violate this rule by virtue of multiple entries,
but on average the rule still holds true). If exit is a single instruction then, in
multi-exit functions, further instructions can be saved by replacing branches to a
single exit by the exit instructions themselves.

Exit from functions which use no stack and save no floating point registers is
particularly simple:

 MOV pc, lr

(26-bit compatibility demands MOVS pc, lr to reinstate the caller’s PSR flags, but
this must not be used in 32-bit modes).

Exit from other functions which save no floating-point registers is by:

 LDMEA fp, {v1-v5, sb, fp, sp, pc} ; as saved

Here, it is crucial that fp points just below the save code pointer, as this value is
not restored, (LDMEA is a pre-decrement multiple load).(26-bit compatibility
demands LDMEA fp, {regs}^, to reinstate the caller’s PSR flags, but this must not
be used in 32-bit modes).

The saving and restoring of floating-point registers is discussed above.

Some examples

This section is not intended to be a general guide to the writing of code generators,
but it seems worthwhile to highlight some of the optimisations that appear
particularly relevant to the ARM and to this standard.

In order to make effective use of the APCS, compilers must compile code a
procedure at a time. Line at a time compilation is insufficient.

In the case of leaf functions, much of the standard entry sequence can be omitted.
In very small functions, such as those that frequently occur implementing data
abstractions, the function-call overhead can be tiny.

Consider:

 typedef struct {...; int a; ...} foo;
 int foo_get_a(foo* f) {return(f-a);}

The function foo_get_a can compile to just:

 LDR a1, [a1, #aOffset]
 MOV pc, lr ; MOVS in 26-bit modes

In functions with a conditional as the top level statement, in which one or other
arm of the conditional is leaf (calls no functions), the formation of a stack frame
can be delayed.
316

ARM procedure call standard
For example, the C function:

 int get(Stream *s)
 {
 if (s->cnt > 0)
 { --s;
 return *(s-p++);
 }
 else
 {
 ...
 }
 }

... could be compiled (non-reentrantly) into:

 get MOV a3, a1
 ; if (s->cnt > 0)
 LDR a2, [a3, #cntOffset]
 CMP a2, #0
 ; try the fast case,frameless and heavily conditionalized
 SUBGT a2, a2, #1
 STRGT a2, [a3, #cntOffset]
 LDRGT a2, [a3, #pOffset]
 LDRBGT a1, [a2], #1
 STRGT a2, [a3, #pOffset]
 MOVGT pc, lr
 ; else, form a stack frame and handle the rest as normal code
 MOV ip, sp
 STMDB sp!, {v1-v3, fp, ip, lr, pc}
 CMP sp, sl
 BLMI |__rt_stkovf_split_small|
 ...
 LDMEA fp, {v1-v3, fp, sp, pc}

This is only worthwhile if the test can be compiled using any spare of a1-a4 and ip,
as scratch registers. This technique can significantly accelerate certain
speed-critical functions, such as read and write character.

Finally, it is often worth applying the tail call optimisation, especially to
procedures which need to save no registers.

For example:

 extern void *malloc(size_t n)
 {
 return primitive_alloc(NOTGCABLEBIT, BYTESTOWORDS(n));
 }
317

The APCS in non-user ARM modes
... is compiled (non-reentrantly) by the C compiler into:

 malloc
 ADD a1, a1, #3 ; 1S
 MOV a2, a1, LSR #2 ; 1S - BYTESTOWORDS(n)
 MOV a1, #1073741824 ; 1S - NOTGCABLEBIT
 B primitive_alloc ; 1N+2S = 4S

In this case, the optimisation avoids saving and restoring the call-frame registers
and saves 5 instructions (and many cycles-17 S cycles on an uncached ARM with
N=2S).

The APCS in non-user ARM modes

There are some consequences of the ARM’s architecture which, while not explicit in
the ARM Procedure Call Standard, need to be understood by implementors of code
intended to run in the ARM’s SVC and IRQ modes.

An IRQ corrupts r14_irq, so IRQ-mode code must run with IRQs off until r14_irq
has been saved.

A general solution to this problem is to enter and exit IRQ handlers written in
high-level languages via hand-crafted wrappers, which on entry save r14_irq,
change mode to SVC, and enable IRQs; and on exit restore the saved r14_irq, IRQ
mode and the IRQ-enable state. Thus the handlers themselves run in SVC mode,
avoiding the problem in compiled code.

SWIs corrupt r14_svc, so care has to be taken when calling SWIs in SVC mode.

In high-level languages, SWIs are usually called out of line, so it suffices to save
and restore r14 in the calling veneer around the SWI. If a compiler can generate
in-line SWIs, then it should, of course, also generate code to save and restore r14
in-line around the SWI, unless it is known that the code will not be executed in SVC
mode.

Aborts and pre-ARM6-based ARMs

With pre-ARM6-based ARMs (ARM2, ARM3), aborts corrupt r14_svc. This means
that care has to be taken when causing aborts in SVC mode.

An abort in SVC mode may be symptomatic of a fatal error, or it may be caused by
page faulting in SVC mode. Page faulting can occur because an instruction needs
to be fetched from a missing page (causing a prefetch abort), or because of an
attempted data access to a missing page. The latter may occur even if the
SVC-mode code is not itself paged, (consider an unpaged kernel accessing a paged
user-space).
318

ARM procedure call standard
A data abort is recoverable provided r14 contains nothing of value at the instant of
the abort. This can be ensured by:

● saving R14 on entry to every function and restoring it on exit;

● not using R14 as a temporary register in any function;

● avoiding page faults (stack faults) in function entry sequences.

A prefetch abort is harder to recover from, and an aborting BL instruction cannot
be recovered, so special action has to be taken to protect page faulting function
calls.

In code compiled from C, r14 is saved in the 2nd or 3rd instruction of an entry
sequence. Aligning all functions at addresses which are 0 or 4 modulo 16, ensures
the critical part of the entry sequence cannot prefetch-abort. A compiler can do
this by padding code sections to a multiple of 16 bytes, and being careful about the
alignment of functions within code sections.

Data-aborts early in function entry sequences can be avoided by using a software
stack-limit check.

A possible way to protect BL instructions from prefetch-aborts, is to precede each
BL by a

 MOV ip, pc

instruction. If the BL faults, the prefetch abort handler can safely overwrite r14 with
ip before resuming execution at the target of the BL. If the prefetch abort is not
caused by a BL then this action is harmless, as r14 has been corrupted anyway,
(and, by design, contained nothing of value at any instant a prefetch abort could
occur).
319

The APCS in non-user ARM modes
320

Index

non-executable 271
Symbols
*DebugIAF 23
*Filer_OpenDir 99
*FrontEnd_SetUp 186, 203
*FrontEnd_Start 186, 188, 197

invoking using command_is 193
*IconSprites 188
*Prefix 238
*RMEnsure 188
*RMTidy 160
*Spool 99
*WimpSlot 98

A
a.out format 251
A8Time

Application menu 116
command line interface 117
menu options

Command line 115
Output window 116
SetUp

dialogue box 115
menu 115

SetUp options
File 115

Acorn Library Format see ALF
Acorn Make Utility see AMU
AIF 151, 247, 271-279

debugging 272
executable 271
layout of an image 273
layout of an uncompressed image 273
layout of the header 275

relocation 272
self-move 277
self-relocation 272, 277
zero-initialisation 277

ALF 247, 267-270
alignment 248
ChunkIndex 268
Data 268
DataLength 268
EntryLength 268
LIB_DATA 269
LIB_DIRY 267
LIB_TIME 269
LIB_VSRN 269
library file chunks 267
object code libraries 270
OFL_SYMT 270
OFL_TIME 270
Time stamps 269

AMU 121-125
Application menu 123
command line 124
controlling operation 122
SetUp dialogue box 122
SetUp menu 122
specifying makefile to be used 122
specifying targets 122

amu command line tool 121
AOF 247, 249-266

alignment 248
area attributes 258
area name 253
area size 253
AREAs 156

attributes 160
packing 158
321

attributes and alignment 253
chunk file format 249
entry address area / entry address offset 252
files 143
format of area headers 253
format of the areas chunk 259
format of the symbol table chunk 262
header chunk format 251
identification chunk (OBJ_IDFN) 266
number of areas 252
number of relocations 253
relocation directives 259
string table chunk (OBJ_STRT) 266
symbol attributes 263
symbol table 252
version ID 252

APCS 155, 297-319
APCS-2 compatibility 308
argument passing 305
C language calling conventions 309

argument list marshalling 309
argument representation 309
non-simple value return 310

data representation 305
design criteria 298
examples 316
function entry 310
non-user ARM modes 318
purpose 297
registers 299

floating point 301
general 300

stack 301
stack backtrace 302
variants of APCS 307

application description
arrow icons 197
DBOX section 195
DESELECTIONS section 199
EXCLUSIONS section 200
FILEOUTPUT section 195
icon default values 197
icon types 195

INCLUSIONS section 200
MAKE_EXCLUSIONS section 200
MAKE_ORDER section 201
MENU section 198
METAOPTIONS section 193
ORDER section 201
RULES section 200
SELECTIONS section 199
toggling dialogue box size 197
TOOLDETAILS section 193

applications
adding new ones 185
porting to RISC OS 185

ARM Object Format see AOF
ARM Procedure Call Standard see APCS
arrow icons 197
ASD 247, 280-296

compilation units (sections) 280
data encoding 281
data items 283

Array item 290
code and length field 283
Endproc item 287
Enumeration item 291
Fileinfo item 293
Function Declaration item 292
Label item 287
offsets 284
Procedure item 286
Scope items 292
Section item 284
Set item 291
Struct item 289
Subrange item 291
text names 284
Type item 289
Variable item 288

data types 282
debug data areas (items) 280
endian memory systems 281
order of 280
Source file position 283
sourcepos field 283
322

Auto Run option
enabling 193

Auto Save option
enabling 194

B
breakpoints

setting 27
on addresses and low-level

expressions 32
on procedure names 27

byte
definition 247
sex 247

C
C module header generator (CMHG) 160
chunk file

chunkId 250
format 249
header entries 250
layout 249
offset 250

command line interface 106
A8Time 117
DecAOF 129
Diff 134
Find 141
LibFile 147
Link 162
ModSqz 166
ObjSize 170
Squeeze 174
UnModSqz 178
Xpand 183

command lines
passing long command lines see DDEUtils

module
compiler

adding a new one 185
compiling a program

with debugging information 22
conditional macro assignment 215
Context window 24
controlling DDT execution 33

D
DDEUtils module 185, 202, 237
DDT 19-57

accessing nested variables 30
breakpoints

on addresses and low-level
expressions 32

on procedure names 27
Context window 24
enabling debugging 22
error messages 24
example session 50
execution control 33
limitations 19
linking a program 22
main menu 26
menu options

*Commands 48
Breakpoint 36
Call 35
Change 44
Continue 33
Debug 23
Display 41
Find 48
Help 49
Log 47
Options 46
Quit 49
Single step 34
Trace 39
Watchpoint 37

menu shortcuts
Breakpoint 37
323

Continue 33, 49
Display 41
Single step 35
Watchpoint 39

preparing a program 21
program examination and modification 41
specifying program objects 26
starting a debugging session 23
Status window 24
variable length arrays 30
watchpoints

on variable names 28
debugging

source-level 22
debugging see also DDT (desktop debugging tool)
DecAOF

Application menu 128
command line interface 129
menu options

Command line 128
Output window 129
SetUp

dialogue box 127
menu 128

SetUp options
Area contents 127
Area declarations 128
Debug 127
Files 127
Only area declarations 127
Relocation directives 128
String table 127
Symbol table 127

desktop utility
adding a new one 185

Diff
Application menu 132
command line interface 134
menu options

Command line 132
Dir. structure 132
Equate CR/LF 132
Expand tabs 132

Fast 132
Large files 132
Squidge 132

Output window 133
SetUp

dialogue box 131
menu 132

SetUp options
Case insensitive 131
Expand tabs 131
Remove spaces 131
Squash spaces 131

E
EBNF rule, for application 192
Entry points see Link menu options
environment variables 8

C$Path 8
CLib$Path 8
DDE$Path 8
Hdr$Path 8
Install$Dir 9
LocalRes$Path 9
Makefiles$Path 8
RISCOSLib$Path 8
TCPIPLibs$Path 8

error messages
DDT 24

error throwback 239
Errors

linking a program 155
EXCLUSIONS 200
extracting files

LibFile 145

F
file formats

AIF 271-279
ALF 267-270
324

AOF 249-266
SrcEdit 245
undefined fields 248

file type
Text 75

filename prefixing see DDEUtils module
Find

Application menu 140
command line interface 141
menu options

Allow 139
Command line 139
Grep style 139

Output window 140
SetUp

dialogue box 135
menu 139

SetUp options
Case insensitive 136
Filenames only 136
Files 135
Line count only 136
Patterns 135
Throwback 136
Verbose 136
Wildcards 136

SetUp wildcard filenames
0 or More 139
0 or more filename chs. 138
Filename ch. 138
Or 139
Sub-directories 138

SetUp wildcard patterns
0 or more 138
1 or more 138
Alphanum 137
Any 137
Ctrl 137
Digit 137
Newline 137
Normal 137
Not 137
Set 137

finding
text in a file 80

fonts see SrcEdit (fonts)
format of AOF area headers 253
FrontEnd

!Run, !Boot and !SetUp files 188
producing new RISC OS applications 186

FrontEnd module 185, 186-202
operation when command line tool is

run 186

H
half word

definition 247
hardware and OS requirements for Acorn

C/C++ 7

I
icon types 195
IMPORT directive 160
installing Acorn C/C++ 7

hardware requirement 7
invoking a WIMP frontend for a tool 186

K
KEEP directive 23

L
language processors – output format 247
LIB_DATA 269
LIB_DIRY 267
LIB_TIME 269
LIB_VSRN 269
LibFile 143-148

command line interface 147
325

extracting files 145
limitations when creating libraries 146
menu options

Command line 144
List symbol table 144
Null timestamps 146
Via file 144

Output window 145
SetUp

dialogue box 143
menu 144

SetUp options
Create 143
Delete 143
Extract 144
File list 143
Insert 143
Library 143
List library 144
Object library 144

libraries
linking 155
symbol references 155

library archives
AOF files 143

Link 151-164
AIF 151
command line interface 152, 162
errors 155
IMPORT directive 160
inter-area references 158
libraries 155
linking with the overlay manager 158
loading 151
menu options

Base 153
Command line 152
Debug 152
Entry 153
Link map 152, 154, 158
No case 153
Overlay 153, 157
Relocatable AIF 153

Verbose 154
Via file 153
Workspace 152, 153, 160
X-Ref 152, 158

Output window 154
overlaying programs 156
predefined symbols 161
relocatable AIF images 159
relocatable module format (RMF) 151
relocatable modules 160
SetUp

dialogue box 151
menu 152

SetUp options
AIF 151
Binary 152
Files 151
Module 151
Relocatable AIF 152

specifying files to be linked 151
utility programs 161

linking
preparing to debug a program 22, 152

little endian 247

M
macros

conditional assignment 215
definitions 213
priority 223
recursively defined 214
simply extended 215

Make 14, 203
command execution 209-210
command line tools 71
invoking 59
Makefiles

conventional Makefiles 69
editing 68
file naming 224
format 69
326

specifying 122
structure 212

menu options
Info 59
Open 59
Options 59

MFLAGS macro 228
Output window 67
programmer interface 71
projects 60

adding a member 63
adding a target 65
creating a final target 67
creating a new project 61
final targets 60
listing members 64
opening a project 62
removing a member 63
removing a project 66
setting tool options 65
touching members 64

rule patterns 225-227
tool options, message passing 72
VPATH macro 225
WIMP message format 72

Make project management tool 185
makefiles

directives 221
functions 216
macros 213
substitutions 216

ModSqz
Application menu 166
command line interface 166
menu options

Command line 165
Output window 166
SetUp

dialogue box 165
menu 165

SetUp options
Input 165
Try harder 165

Verbose 165
module headers

creating in assembler 160
multi-tasking

pre-emptive multi-tasking 186

N
nested variables

accessing in DDT 30

O
OBJ_

name of AOF files 250
OBJ_AREA

areas chunk 259
OBJ_IDFN 266
OBJ_STRT 266
ObjAsm

KEEP directive 23
object file

format 250
chunk names 250

type 252
ObjSize

Application menu 169
command line interface 170
menu options

Command line 169
Output window 170
SetUp

dialogue box 169
menu 169

SetUp options
Files 169

OFL_SYMT 270
OFL_TIME 270
output formats in Link 154

AIF 151
binary 152
327

RMF 151
Output window

A8Time 116
DecAOF 129
Diff 133
Find 140
LibFile 145
Link 154
ModSqz 166
ObjSize 170
Squeeze 174
UnModSqz 178
Xpand 182

overlay description files 157
overlay manager

linking 158
overlaying programs 156

P
packing

AREAs 158
parent directories

indicating with ^. 194
porting applications to RISC OS 185
predefined linker symbols 161
Prefix$Dir 227
procedure names

setting breakpoints in DDT 27
program objects

specifying in DDT 26
project management tool

creating 185
projects see MAKE

R
recursively expanded macros 214
relocatable AIF images 159
relocatable module area (RMA) 160
relocatable module format (RMF) 151

relocatable modules 160
relocating applications on the stack

the Workspace option 160
resource files in SrcEdit 203

S
saving single output object 195
SetPaths 8
simply extended macros 215
source-level debugging 22
Squeeze

Application menu 174
command line interface 174
menu options

Command line 173
Output window 174
SetUp

dialogue box 173
menu 173

SetUp options
Input 173
Try harder 173
Verbose 173

SrcEdit 203
Application menu options

Create 96
Options 96
Save All 95
Save Options 95

Backspace 75
block operations 76
bracket-matching 90
carriage return 87
case sensitivity in Find 82
colours 88
ColTab 89
copy a selection 77
copying

Ctrl-C shortcut 78
copying block 78
counting occurrences 82
328

Ctrl-U 75
cutting

Ctrl-X shortcut 79
Delete 75
deleting

Ctrl-K shortcut 79
deleting block 79
entering text 73
file formats 245
find a specific line 86
finding text 80-85
fonts 87
format width 87
formatting text 87
Goto

line 86
option 86

indenting 77
inserting/deleting text 74
keyboard shortcuts 81
keystroke equivalents 100
line spacing 88
linefeed 87
magic characters 82
margin 88
moving block 79
pasting

Ctrl-V shortcut 79
printing a file 88
reading text from another file 90
redoing changes 86
replacing text 81
resource files 203
searching for text 80
select a block 76
selected block - saving a 77
signalling errors via throwback 91
starting 73
tabs 87, 89
task windows 97
text found dialogue box 80
text wrap 88
throwback 203

undoing changes 79, 81, 86
wildcarded expressions 83
window 73

string
definition 247

SWI
DDEUtils_FlushCL 239
DDEUtils_GetCL 239
DDEUtils_GetCLSize 239
DDEUtils_Prefix 237
DDEUtils_ReadPrefix 237
DDEUtils_SetCL 238
DDEUtils_SetCLSize 238
DDEUtils_ThrowbackEnd 241
DDEUtils_ThrowbackRegister 239
DDEUtils_ThrowbackSend 240

Throwback_ReasonErrorDetails 241
Throwback_ReasonInfoDetails 241
Throwback_ReasonProcessing 241

DDEUtils_ThrowbackStart 240
DDEUtils_ThrowbackUnRegister 240
WimpInitialise 186

symbol references
to libraries 155

symbols
predefined linker symbols 161

T
targets

specifying to AMU 122
task windows 97

using the clipboard 98
Templates file

CmdLine 191
Output 191
progInfo 190
query 191
save 192
SetUp 190
Summary 192
Window name 190
329

xfer_send 192
TextFile 75
Throwback

example session 91-93, 94
SWIs 239

throwback 12
protocol 239
SrcEdit 91

throwback see also DDEUtils module
Thumb 258, 265, 266
tool output, specifying default 195
tools

defaults when invoking from Make 197
tools, interactive 12, 103

DDT 19
entering filenames 12
Make 59
SrcEdit 73

tools, non-interactive 12, 103
A8Time 113
AMU 121
Application menu 104
DecAOF 127
Diff 131
entering filenames 12
file output 109
Find 135
LibFile 143
Link 151
ModSqz 165
ObjSize 169
Output windows 107

Summary 108
Text 107
toggling between 108

SetUp dialogue box 105
SetUp menu 106
SID 119, 171
Squeeze 173
starting 103
UnModSqz 177
Xpand 181

transient utilities 161

U
UnModSqz

Application menu 178
command line interface 178
menu options

Command line 177
Output window 178
SetUp

dialogue box 177
menu 177

SetUp options
Input 177
Verbose 177

utility programs 161

V
variable length arrays 30
variable names

setting watchpoints in DDT 28
via file

use in LibFile 144
use in Link 153

W
watchpoints

setting 28
WIMP

description file 186
frontend, adding to tools 186
invoking frontend for a tool 186
producing complete WIMP application 187
setting MAKE options 186

wimpslot
default 193
size 188

word
definition 247

work directory 13
330

writing an application description 192

X
Xpand

Application menu 182
command line interface 183
menu options

Command line 181
Output window 182
SetUp

dialogue box 181
menu 181

SetUp options
Input 181
331

332

✃

Reader’s Comment Form
Desktop Tools, Issue 5

We would greatly appreciate your comments about this Manual, which will be taken into account for the
next issue:

How would you classify your experience with computers?

Did you find the information you wanted?

Do you like the way the information is presented?

General comments:

If there is not enough room for your comments, please continue overleaf

ProgrammerUsed computers before Experienced User Experienced Programmer

Please send an e-mail with your
This information will only be used to get in touch with you in case we wish to explore your
comments further

Your name and address:

comments to:

manuals@riscosopen.org

	Contents
	About this manual
	Part 1 – Getting started
	Part 2 – Interactive tools
	Part 3 – Non-interactive tools
	Part 4 – Appendices

	Conventions used

	Part 1 - Getting started
	1 Installing Acorn C/C++
	Hardware and OS requirements
	Installation
	Environment variables and Acorn C/C++
	DDE$Path
	C$Path
	CLib$Path, TCPIPLibs$Path, RISCOSLib$Path
	Hdr$Path
	Makefiles$Path
	LocalRes$Path
	Install$Dir

	2 Working with desktop tools
	Desktop tools
	Interactive and non-interactive tools
	Entering filenames

	Working styles
	Where to go from here

	Part 2 - Interactive tools
	3 Desktop debugging tool
	Overview
	Topics covered in this chapter

	About debuggers
	Preparing your program
	Compiling
	Linking

	Starting a debugging session
	Specifying program objects
	Procedure names
	Variable names
	Expressions
	Addresses & low-level expressions

	Execution control
	Continue
	Single step
	Call
	Return
	Breakpoint
	Watchpoint
	Trace

	Program examination and modification
	Display
	Change

	Options and other commands
	Log
	Find
	*Commands
	Help
	Quit

	An example debugging session
	The debugging session

	4 Make
	Invoking Make
	Using Make
	Projects
	Creating new projects
	Maintaining projects
	Creating a final target for a project
	Saving a project without Making it
	Setting Make main options
	Text-editing Makefiles
	Using conventional Makefiles

	Makefile format
	Programmer interface
	Registering command-line tools with Make
	Message-passing interface for setting tool options

	5 SrcEdit
	Starting SrcEdit
	Typing in text
	Inserting and deleting text

	SrcEdit menus
	The Misc menu
	Saving text – the Save menu
	Manipulating blocks of text – the Select menu
	The Edit menu
	The Display menu

	Printing a SrcEdit file
	Laying out tables – the Tab key
	Reading in text from another file
	Bracket Matching
	Throwback
	C example throwback session
	Assembler example throwback session
	C++ example throwback session

	Saving Options
	Setting options in a SrcEdit window

	The SrcEdit icon bar menu
	SrcEdit task windows
	Task windows and the clipboard
	Some guidelines and suggestions for using task windows

	Keystroke equivalents
	When editing
	Keystroke equivalents in the Select menu
	Keystroke equivalents in the Edit menu
	Keystroke equivalents in the Misc menu
	Keystroke equivalents in the Find menu
	Keystroke File options

	6 General features
	The Application menu
	The SetUp box
	The SetUp menu

	Output
	The Text window
	The Summary window
	Toggling between the Text and Summary windows
	Processed file output from filter tools

	Part 3 - Non-interactive tools
	7 A8Time
	Background to pipelines and scheduling
	Using A8Time
	The SetUp dialogue box
	The SetUp menu

	The Application menu
	Example output
	Command line interface
	Options

	8 ABC
	9 AMU
	Starting AMU
	The Application menu
	Example output
	Command line interface
	Options

	10 DecAOF
	The SetUp dialogue box
	SetUp options
	The SetUp menu

	The Application menu
	Example output
	Command line interface
	Options

	11 Diff
	The SetUp dialogue box
	SetUp options
	The SetUp menu

	The Application Menu
	Example output
	Example 1
	Example 2

	Command line interface
	Options

	12 Find
	The SetUp dialogue box
	SetUp options
	The SetUp menu

	The Application menu
	Example output
	Command line interface
	Options
	Pattern
	Filepattern

	13 LibFile
	The SetUp dialogue box
	The SetUp options
	The SetUp menu

	Output
	Command line interface
	Options
	Examples

	14 Link
	The SetUp dialogue box
	The SetUp menu

	Output
	Possible errors during a link stage
	Libraries
	Generating overlaid programs
	Overlay description files
	X-Ref option
	Link map option
	Linking with the overlay manager

	Relocatable AIF images
	Relocatable modules
	Transient utilities
	Predefined linker symbols
	Command line interface
	Options

	15 ModSqz
	The SetUp dialogue box
	The SetUp menu

	The Application menu
	Example output
	Command line interface
	Options

	16 ObjSize
	The SetUp dialogue box
	The SetUp menu

	The Application menu
	Example output
	Command line interface

	17 SID
	18 Squeeze
	The SetUp dialogue box
	The SetUp menu

	The Application menu
	Example output
	Command line interface
	Options

	19 UnModSqz
	The SetUp dialogue box
	The SetUp menu

	The Application menu
	Example output
	Command line interface
	Options

	20 Xpand
	The SetUp dialogue box
	The SetUp menu

	The Application menu
	Example output
	Command line interface
	Options

	21 Adding your own desktop tools
	The FrontEnd module
	Overview
	Changes since previous versions

	Producing a complete Wimp application
	!Run, !Boot and !SetUp files
	!Sprites file
	Template files
	Writing an application description
	Messages files
	Providing interactive help
	!Choices file

	The DDEUtils module
	SrcEdit
	Resource files

	Make

	Appendices
	Appendix A: Changes to the tools
	Appendix B: Makefile syntax
	Make and AMU
	Command execution

	Makefile basics
	Makefile structure
	Macro definitions

	Advanced features
	Substitutions
	Functions
	Directives
	Macro priority
	File naming
	VPATH
	Rule patterns, .SUFFIXES, $@, $*, $< and $?
	Prefix$Dir

	Makefiles constructed by Make
	Miscellaneous features

	Appendix C: FrontEnd protocols
	Star Commands
	EBNF Grammar of Description Format
	WIMP Message returned after a *FrontEnd_SetUp

	Appendix D: DDEUtils
	Filename prefixing SWIs
	Filename prefixing *Commands
	Long command line SWIs
	Throwback SWIs
	Throwback WIMP messages

	Appendix E: SrcEdit file formats
	Language File Format
	Help File Format

	Appendix F: Code file formats
	Terminology
	Byte Sex or Endian-ness
	Alignment
	Undefined fields
	AOF
	Chunk file format
	Object file format
	Format of the AOF header chunk
	Format of area headers
	Attributes and Alignment
	Area Attributes Summary
	Format of the areas chunk
	Relocation directives
	Format of the symbol table chunk
	Symbol Attributes
	Symbol Attribute Summary
	String table chunk (OBJ_STRT)
	Identification chunk (OBJ_IDFN)

	ALF
	Library file format
	LIB_DIRY
	ChunkIndex
	EntryLength
	DataLength
	Data
	Time Stamps
	LIB_TIME
	LIB_VSRN
	LIB_DATA

	Object Code Libraries
	OFL_SYMT
	OFL_TIME

	AIF
	Properties of AIF
	Executable AIF

	The Layout of AIF
	AIF Header Layout

	Zero-Initialisation Code
	Self-Move and Self-Relocation Code

	ASD
	Order of Debugging Data
	Endian-ness and the Encoding of Debugging Data
	Representation of Data Types
	Representation of Source File Positions
	Debugging Data Items in Detail
	The Code and Length Field
	Text Names in Items
	Offsets in File and Addresses in Memory
	Section Items
	Procedure Items
	Label Items
	Endproc Items
	Variable Items
	Type Items
	Struct Items
	Array Items
	Subrange Items
	Set Items
	Enumeration Items
	Function Declaration Items
	Begin and End Naming Scope Items
	Bitfield Items
	Fileinfo Items

	Appendix G: ARM procedure call standard
	The purpose of APCS
	Design criteria

	The ARM Procedure Call Standard
	Register names
	The Stack

	APCS variants
	C Language calling conventions
	Function entry

	Some examples
	The APCS in non-user ARM modes

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

