
Acorn C/C++

ii

Copyright © 1994 Acorn Computers Limited. All rights reserved.

Some updates and changes copyright © 2002 Castle Technology Ltd. All rights
reserved.

Some updates and changes copyright © 2014-2021 RISC OS Open Ltd. All rights
reserved.

Issue 1 published by Acorn Computers Technical Publications Department.

Issue 2 published by Castle Technology Ltd.

Issues 3-6 published by RISC OS Open Ltd.

No part of this publication may be reproduced or transmitted, in any form or by
any means, electronic, mechanical, photocopying, recording or otherwise, or
stored in any retrieval system of any nature, without the written permission of the
copyright holder and the publisher, application for which shall be made to the
publisher.

The product described in this manual is not intended for use as a critical
component in life support devices or any system in which failure could be expected
to result in personal injury.

The product described in this manual is subject to continuous development and
improvement. All information of a technical nature and particulars of the product
and its use (including the information and particulars in this manual) are given by
the publisher in good faith. However, the publisher cannot accept any liability for
any loss or damage arising from the use of any information or particulars in this
manual.

If you have any comments on this manual, please complete the form at the back of
the manual and send it to the address given there.

All trademarks are acknowledged as belonging to their respective owners.

Published by RISC OS Open Ltd.

Issue 1, December 1994 (Acorn part number 0484,232).
Issue 2, October 2002 (updates by Castle Technology Ltd).
Issue 3, October 2014 (updates by RISC OS Open Ltd).
Issue 4, April 2015 (updates by RISC OS Open Ltd).
Issue 5, October 2020 (minor corrections).
Issue 6, July 2021 (updates by RISC OS Open Ltd).

Contents

Introduction 1

Installation of Acorn C/C++ 1
The C compiler 2
The C++ translator 2
This user guide 2
Useful references 6

Part 1 – Using the tools 9

CC and C++ 11
The underlying programs 11
Getting started with CC and C++ 12
Libraries 14
File naming and placing conventions 15
Include file searching 18
The SetUp dialogue box 22
The SetUp menu 25
Output messages 42
The icon bar menu 43
Command lines 44
Worked examples 53
iii

Contents
CMHG 57
Starting CMHG 58
The icon bar menu 59
Example output 59
Command line interface 60

ToANSI 63
ToANSI C translation 64
Starting ToANSI 65
The icon bar menu 66
Example output 66
Command line interface 67

ToPCC 69
ToPCC C translation 70
Starting ToPCC 71
The icon bar menu 72
Example output 73
Command line interface 74
iv

Contents
Part 2 – C language issues 75

C implementation details 77
Implementation details 78
Identifiers 78
Data elements 78
Structured data types 81
Pointers 84
Arithmetic operations 84
Expression evaluation 85
Implementation limits 85

Standard implementation definition 87
Translation (J.3.1) 87
Environment (J.3.2) 87
Identifiers (J.3.3) 88
Characters (J.3.4) 88
Integers (J.3.5) 90
Floating point (J.3.6) 90
Arrays and pointers (J.3.7) 90
Hints (J.3.8) 91
Structures, unions, enumerations and bitfields (J.3.9) 91
Qualifiers (J.3.10) 92
Preprocessing directives (J.3.11) 92
Library functions (J.3.12) 92
Architecture (J.3.13) 96

C99 features 97
C99 features implemented in the compiler 97
C99 restrictions implemented in the compiler 110
Other C99 features 110
C99 non-compliances 110
Implementation notes 111
Compatibility issues 111

C18 features 112
C18 features implemented in the compiler 112
C18 non-compliances 118
Compatibility issues 118
v

Contents
Extra features 119
#warning directive 119
#pragma directives 119
Special function declaration keywords 125
Special variable declaration keywords 125
Pre-defined macros 126
Intrinsic functions 127
Large file support 128
Inline assembler 129

The C library 135
Compatibility Issues 135
assert.h 136
complex.h 137
ctype.h 138
errno.h 139
fenv.h 141
float.h 142
inttypes.h 143
iso646.h 144
limits.h 145
locale.h 146
math.h 148
setjmp.h 151
signal.h 152
stdalign.h 154
stdarg.h 155
stdbool.h 157
stddef.h 158
stdint.h 159
stdio.h 161
stdlib.h 180
string.h 192
stdnoreturn.h 199
tgmath.h 200
time.h 201
uchar.h 206
wchar.h 207
wctype.h 208
vi

Contents
The ANSI library 209
Extra functions 210

The Event library 211
Introduction 211
Registering and deregistering event handlers 211
Registering and deregistering message handlers 212
Quitting applications 212
Programmer interface 212
Initialisation 213
Polling 214
Registering handlers 215
Handlers 217
Example 218

The Wimp library 221
Programmer interface 222

The Toolbox library 233

The Render library 235
vii

Contents
Part 3 – C++ language issues 237

C++ implementation details 239
Translation Limits 239
Identifiers (2.3) 240
Character Constants (2.5.2) 240
Floating Constants (2.5.3) 240
String Literals (2.5.4) 241
Start and Termination (3.4) 241
Fundamental Types (3.6.1) 241
Integral Conversions (4.2) 242
Expressions (5) 242
Function Call (5.2.2) 242
Explicit Type Conversion (5.4) 243
Multiplicative Operators (5.6) 243
Shift Operators (5.8) 243
Relational Operators (5.9) 243
Storage Class Specifiers (7.1.1) 244
Type Specifiers (7.1.6) 244
Asm Declarations (7.3) 244
Linkage Specifications (7.4) 244
Class Members (9.2) 245
Bitfields (9.6) 245
Multiple Base Classes (10.1) 245
Argument Matching (13.2) 246
Exception Handling (experimental) (15) 246
Predefined Names (16.10) 246
viii

Contents
The Streams library 247
Introduction 248
filebuf 253
fstream 257
ios 261
istream 272
manipulators 279
ostream 283
stdiobuf 289
streambuf – protected 290
streambuf – public 298
strstream 303
strstreambuf 306

The Complex Math library 309
Introduction 310
cartesian/polar 311
complex_error 313
exp, log, pow, sqrt 316
complex operators 318
cplxtrig 321

Part 4 – Developing software for RISC OS 323

Portability 325
General portability considerations 325
ISO C vs K&R C 328
The ToPCC and ToANSI tools 332
pcc compatibility mode 332
Environmental aspects 336
Software Interrupts (SWIs) 338
ix

Contents
Assembly language interface 341
Register names 342
Register usage 342
Control arrival 343
Passing arguments 343
Return link 344
Structure results 344
Storage of variables 345
Function workspace 345
Examples 345

RISC OS Compatibility 347
32-bit compatibility 347
The shared C library 348
Ensuring the necessary components are present 348

How to write relocatable modules in C 351
Getting started 351
Constraints on modules written in C 352
Overview of modules written in C 352
Functional components of modules written in C 353

Overlays 373
Paging vs overlays 373
When to use overlays 374

Part 5 – Appendices 377

Changes to the C compiler 379

C errors and warnings 385
Interpreting CC errors and warnings 385
Warnings 386
Non-serious errors 394
Serious errors 404
Fatal errors 419
System errors 420

C++ errors and warnings 421
‘Not implemented’ messages 421
x

Contents
C function index 437

C++ class index 443

Index 447
xi

Contents
xii

Introduction

corn C/C++ is a development environment for producing RISC OS desktop

applications and relocatable modules written in C and/or in C++. It consists of

a number of programming tools which are RISC OS desktop applications. These
tools interact in ways designed to help your productivity, forming an extendable
environment integrated by the RISC OS desktop. Acorn C/C++ may be used with
Acorn Assembler (a part of this product) to provide an environment for mixed
language development.

This product includes tools to:

● edit program source and other text files

● search and examine text files

● convert C source and header text between ANSI and UNIX dialects

● examine some binary files

● compile and link C programs

● compile and link C++ programs

● construct relocatable modules entirely from C or C++

● compile and construct programs under the control of makefiles, these being
set up from a simple desktop interface

● squeeze finished program images to occupy less disc space

● construct linkable libraries

● debug RISC OS desktop applications interactively

● design RISC OS desktop interfaces and test their functionality

● use the Toolbox to interact with those interfaces.

Most of the tools in this product are also of general use for constructing
applications in other programming languages, such as Arm Assembler. These
non-language-specific tools are described in the accompanying Desktop Tools guide.

Installation of Acorn C/C++

Installation of Acorn C/C++ is described in the chapter Installing Acorn C/C++ on
page 7 of the accompanying Desktop Tools guide.

A

1

The C compiler
The C compiler

The Acorn C compiler for RISC OS (the tool CC supplied as a part of this product) is
a strict implementation of the ISO 9899 family of standards, specifically:

● A full implementation of C as defined by the ISO standard ISO/IEC 9899:1990
(this ISO standard is technically identical to the earlier 1989 ANSI C standard).

● Many of the features and library functions from ISO/IEC 9899:1999.

● Many of the features and library functions from ISO/IEC 9899:2018 (this ISO
standard is a clarification of the earlier 2011 edition which it replaces).

These versions are commonly referred to as C90, C99 (see C99 features on page 97),
and C18 (see C18 features on page 112) respectively.

To obtain the standard documents, see the section Useful references on page 6.

The C++ translator

The C++ translator for RISC OS (the tool C++ supplied as a part of this product) is
a port of Release 3.0 of AT&T’s CFront product. This is a relatively old
implementation of C++ and does not conform to the ISO/IEC 14882:1998 standard.

This user guide

This guide is a reference manual for the C tools CC, C++, CMHG, ToANSI and
ToPCC working as part of the development environment of Acorn C/C++. These are
the only tools in this product which are not used for programming in other
languages, and already described in the accompanying Desktop Tools guide. This
manual also documents the C and C++ library support provided and other aspects
that are particular to this C product:

● special features of this implementation of the C and C++ languages

● operating the Acorn C/C++ tools specific to the C and C++ languages

● developing programs for the RISC OS environment:

● Portability issues, including the portable C compiler (pcc) facility

● Desktop applications

● Relocatable modules

● Overlays

● Calling other programs and languages from C.

This guide is not intended as an introduction to C or C++, and does not teach C or
C++ programming; nor is it a reference manual for the C standards. Both these
needs are addressed by publications listed in the section Useful references on page 6.
2

This guide is organised into parts:

Part 1 – Using the tools

Part 2 – C language issues

Part 3 – C++ language issues

Part 4 – Developing software for RISC OS

Part 5 – Appendices

Part 1 – Using the tools

This part of the guide describes the operation of the programming tools specific
to C. The first chapter describes the interaction of the C tools with the rest of the
development environment; each of the remaining chapters is devoted to an
individual tool. Examples in the text and on disc are used to illustrate several
points.

The chapters are:

● CC and C++

● CMHG

● ToANSI

● ToPCC

Part 2 – C language issues

This covers issues to do with the C programming language itself, in particular
those parts of the ISO standard that are necessarily machine- or operating
system-specific.

The chapters are:

● C implementation details

How Acorn C implements those aspects of the language which ISO leaves to
the discretion of the implementor; and how Acorn C behaves in those areas
covered by Annex J of the standard (which lists those aspects which the
standard requires each implementation to define).
3

This user guide
● The C library

This chapter works through the headers of the C library, (assert.h to
wctype.h), outlining the contents of each one:

● function prototypes

● macro, type and structure definitions

● constant declarations.

● The ANSI library

This chapter details the ANSI library, a superset of the C library that provides
additional features useful in debugging and profiling your software.

● The Event library

This chapter details the Event library, which provides calls for you to more
easily dispatch Toolbox and Wimp events within Toolbox based applications.

● The Wimp library

This chapter documents the Wimp library, which provides a set of C veneers
onto the Wimp (or Window Manager) SWI interface.

● The Toolbox library

This chapter documents the Toolbox library, which provides a set of C veneers
onto the Toolbox SWIs.

● The Render library

This chapter documents the Render library, which provides a set of C veneers
onto the DrawFile SWIs, used to render Draw files.

Part 3 – C++ language issues

This covers issues to do with the C++ programming language, such as details of its
implementation and of the libraries supplied with it.

● C++ implementation details

This chapter describes implementation specific behaviour of Acorn C++.

● The Streams library

This chapter describes the C++ Streams library, giving a synopsis (including
prototypes) and a description of each available interface.

● The Complex Math library

This chapter describes the C++ Complex Math library, giving a synopsis
(including prototypes) and a description of each available interface.
4

Part 4 – Developing software for RISC OS

This part of the Guide tells you how to write software in C for the RISC OS
environment. Examples in the text and on disc are used to illustrate each type of
program development. It also includes a chapter on portability to help with porting
applications in C to and from RISC OS.

The chapters are:

● Portability

The chapter covers:

● portability considerations in general

● the major differences between ANSI and ‘K&R’ C

● using the pcc compatibility mode of the Acorn compiler

● standard headers and libraries

● environmental aspects of portability.

● Assembly language interface

How to handle procedure entry and exit in assembly language, so that you can
write programs which interface correctly with the code produced by the C
compiler.

● RISC OS Compatibility

Issues in developing software that is compatible with earlier versions of
RISC OS running on older Arm processors.

● How to write relocatable modules in C

Relocatable modules – the building blocks of the RISC OS operating system –
are needed for device drivers and similar low-level software.

● Overlays

This chapter explains how to write an application using overlays, with a worked
example as an illustration.

Part 5 – Appendices

The appendixes are:

● Changes to the C compiler

This appendix highlights all the features that have changed since Acorn’s final
release of the Desktop Development Environment in 1994.

● C errors and warnings

Messages produced by the compiler, of varying degrees of severity.

● C++ errors and warnings

Messages produced by the translator, of varying degrees of severity.
5

Useful references
Conventions used

Throughout this Guide, a fixed-width font is used for text that the user should type,
with an italic version representing classes of item that would be replaced in the
command by actual objects of the appropriate type. For example:

cc options filenames

This means that you type cc exactly as shown, and replace options and
filenames by specific examples.

Where it is necessary to differentiate between text you type, and that output by the
computer, your input is shown in bold, and the computer’s response in a normal
weight.

Useful references

C programming
● Harbison, S P and Steele, G L, (1994) A C Reference Manual, (fourth edition).

Prentice-Hall, Englewood Cliffs, NJ, USA. ISBN 0133262243.

This is a very thorough reference guide to C, including a useful amount of
information on the ANSI C standard.

● Kernighan, B W and Ritchie, D M, (1988) The C Programming Language (second
edition). Prentice-Hall, Englewood Cliffs, NJ, USA. ISBN 0-13-110362- 8.

This is the original C ‘bible’, updated to cover the essentials of ANSI C too.

● Koenig, A, (1989) C Traps and Pitfalls, Addison-Wesley, Reading, Mass, USA.
ISBN 0201179288.

This book explains how to avoid the most common traps and pitfalls that
ensnare even the most experienced C programmers. It provides informative
reading at all levels.

C++ programming
● Stroustrup, B, (1991) The C++ Programming Language, (second edition).

Addison-Wesley, Reading, Mass, USA. ISBN 0-201-53992-6.

The standard book describing the C++ language, including a complete copy of
the Reference Manual.

● Ellis, A and Stroustrup, B, (1990) The Annotated C++ Reference Manual.
Addison-Wesley, Reading, Mass, USA. ISBN 0-201-51459-1.

The original Reference Manual, used as an ANSI base document, with
additional annotations and commentary sections.
6

http://www.amazon.co.uk/exec/obidos/ASIN/0201179288/qid%3D1031844517/202-1219229-0979808#product-details
http://www.amazon.co.uk/exec/obidos/ASIN/0133262243/qid=1031844400/sr=1-4/ref=sr_1_3_4/202-1219229-0979808
http://www.amazon.co.uk/exec/obidos/ASIN/0131103628/ref=sr_aps_books_1_2/202-1219229-0979808

RISC OS
● The RISC OS User Guide supplied with your computer, which describes how to

use the RISC OS operating system and the applications Edit, Paint and Draw.

● The RISC OS Programmer’s Reference Manual, which contains detailed information
describing the features of RISC OS available to software developers.

● The RISC OS Style Guide, which contains useful guidelines for software authors.

The C standards

The C standard as defined in American National Standard for Information Systems –
Programming Language C, ANSI X3.159-1989 was adopted by the BSI as BS EN
29899:1993 and by the International Standards Organisation (ISO) as ISO/IEC
9899:1990. This standard is often referred to as ‘C90’ and although the section
numbers were changed it is technically identical to ‘C89’.

These standards were superceded by the ISO/IEC 9899:1999 standard, commonly
known as ‘C99’ and defined in Programming Languages – C , ISO/IEC 9899:1999. This
standard has been adopted by the BSI as BS ISO/IEC 9899:1999 which is identical.

These standards were themselves superceded by the ISO/IEC 9899:2018 standard,
commonly known as ‘C18’ and defined in Programming Languages – C , ISO/IEC
9899:2018. This standard has been adopted by the BSI as BS ISO/IEC 9899:2018
which is identical.

The latest edition of the standard is available to purchase from the standards
organisations, furthermore the older C99 standard has been published in book
form by Wiley & Sons (The C Standard: Incorporating Technical Corrigendum 1, ISBN
978-0-470-84573-8). You should find the coverage of ANSI C and ISO C99 in this
and the books listed above adequate for all but the most demanding requirements.

The ANSI C++ standard

The Acorn C++ front end was developed with reference to The Annotated C++
Reference Manual referred to above but has not been formally tested against the
standard.
7

Useful references
8

Part 1 – Using the tools
9

10

1 CC and C++

C is a desktop tool which provides an easy interface to the CC and Link

programs that Acorn C/C++ installs in your computer’s library. It constructs

command lines and passes them to these programs. Likewise, C++ is a desktop
tool that constructs command lines for the CC, CFront and Link programs in the
library.

Because these two desktop tools are so similar, and share the underlying CC and
Link programs, we describe them in the same chapter. Most of the rest of this
chapter covers the CC and C++ options, and gives some programming examples.

If you are new to RISC OS and the Acorn C/C++ product, read the whole of this
chapter before starting to use Acorn C/C++. If you are an experienced C or C++
programmer, you will find this chapter essential for reference, and may choose to
tackle the section Worked examples on page 53 first. If you have used earlier versions
of the Acorn C/C++ compiler you should refer to section Changes to the C compiler on
page 379.

The underlying programs

The CC compiler is a full implementation of ISO C90 with many ISO C99 and C18
features as described in the chapter C99 features on page 97, and C18 features on
page 112. It consists of a preprocessor and a code generator; it processes text files
containing the source and headers of programs into linkable object files.

The Link program combines these object files to produce executable image files.

CFront is a C++ translator; it is a port of Release 3.0 of AT&T’s CFront product. It
converts C++ source code to C source code.

The characteristics of CC as a language implementation are defined in Part 2 –
C language issues on page 75. Similar information for C++ is in Part 3 – C++ language
issues on page 237.

How the tools use them

The command line that the CC tool produces first calls CC to preprocess and
compile the source into object files; it then calls Link to link those object files.

C

11

Getting started with CC and C++
The command line that the C++ tool produces first calls the CC preprocessor in a
special C++ compatible mode; it then calls CFront to convert the resultant source
files to C; it then calls CC to compile the C source into object files, again using a
special C++ compatible mode; it finally calls Link to link those object files.

Getting started with CC and C++

To use the CC or C++ tool, first open the Apps.DDE directory display, then double
click on !CC or !C++ as required. (You cannot start CC or C++ by double clicking on
a file – the tools own no file type unlike, for example, Draw.)

The tool’s icon appears on the icon bar:

Clicking Select on this icon, or dragging a source file from a directory display to
this icon, brings up the SetUp dialogue box. To see this work, open the directory
display for Sources.DDE-Examples.C/C++, and then drag either
CHello.c.HelloW to the CC icon, or C++Hello.c++.HelloW to the C++
icon. The SetUp dialogue box appears:

As you have dragged a source file to bring up this dialogue box, its name appears
in the writable Source icon; otherwise this icon would have appeared containing
the name of the last filename entered there, or be empty if there were none.
12

CC and C++
Clicking Menu on the SetUp dialogue box brings up the SetUp menu:

The SetUp dialogue box and menu specify the next compilation to be done. You
start the next job by clicking Select on the Run button on the dialogue box (or on
the Command line menu dialogue box). Clicking Select on the Cancel button
removes the SetUp dialogue box and clears any changes you have just made to the
options settings, leaving them back in the state they were in before you brought up
the SetUp box. The options last until you adjust them again or reload the tool; or
you can save the options for future use with an item from the main icon menu.

Ensure that the option settings are the defaults, as in the above pictures. Click on
the Run button to compile either HelloW example with an integral link step. Save
the executable image file produced in the directory above that holding the source,
naming it HelloW, then double click Select on the file’s icon to run it. The program
runs, putting a Hello world message in the standard RISC OS command line
window:
13

Libraries
Libraries

C libraries

There are several libraries provided to support the C compiler:

● The stubs for the shared C library

This provides all the standard facilities of the language, as defined by the ISO
standard document. Code using calls to the shared C library will be portable to
other environments if a standards-compliant compiler and library are
available for that environment. See the chapter The C library on page 135.

● The ANSI library

The ANSI library is a stand-alone version of the shared C library that contains
a few extra functions useful in debugging and profiling your code. You should
use it for development only, using the shared C library in any final product. See
the chapter The ANSI library on page 209.

● The Event library

The purpose of the ‘events’ library is to allow the client to more easily dispatch
Toolbox and Wimp events within Toolbox based applications. See the chapter
The Event library on page 211.

● The Wimp library

This is a low-level library that provides veneers to the Wimp_… SWI calls; you
may use it to interface directly with the Window Manager module. See the
chapter The Wimp library on page 221, and the RISC OS Programmer’s Reference
Manual.

● The Toolbox library

This library provides veneers onto the Toolbox SWIs; both the veneers and the
SWIs are described in the User Interface Toolbox guide.

C++ libraries

The C++ compiler produces output which uses the ANSI C library (by linking with
the stubs). A C++ program also needs to link with the C++ library which is held in
C:c++lib.o.c++lib. This has support functions such as new and delete, and
includes the streams and complex maths libraries.
14

CC and C++
File naming and placing conventions

This section explains the concept of a work directory, and describes the naming
conventions used to identify the different classes of file you will come across when
using Acorn C/C++.

Work directory

Both CC and C++ operate in a work directory. The work directory is where the tools
place all output files that you don’t explicitly place yourself by dragging from a
Save As dialogue box. This includes object files to be linked by an integral link
step, assembly language output and listing output. The work directory is also a
place where some input source and header files are looked for – see the next
sections for more details.

If you’re using Make, the work directory is simply the directory containing the
makefile controlling the job.

If you’re using the CC or C++ tools, the work directory is formed from the directory
containing the source file, modified by the relative path name specified by the
Work directory option on the SetUp menu. The default Work directory SetUp
menu value is ^.

For example, when compiling the example ‘Hello world’ C program with the default
Work directory setting:

● The source is in the directory
Sources.DDE-Examples.C/C++.CHello.c

● The work directory is therefore
Sources.DDE-Examples.C/C++.CHello.c.^, i.e.
Sources.DDE-Examples.C/C++.CHello.

A typical directory arrangement is:

!MyAPP

Makefile !RunImage c h o

Examples
15

File naming and placing conventions
The resource files (such as !Run and Res) normally found in an application
directory are not shown above. With directories arranged as above and default
option settings, the work directories for both the Make and the C/C++ tools are the
same, namely Examples.!MyApp.

Filename conventions

The Acorn C/C++ system, in common with others, uses naming conventions to
identify the classes of file involved in the compilation and linking process. Many
systems use conventional suffixes for this. For example, the suffix .c denotes C
source files on UNIX and Windows systems. This convention clashes with
RISC OS’s use of the full-stop character in pathnames. It is more natural under
RISC OS filing systems to use a prefix convention, e.g. c.foo, where c is the
directory containing C source files, and foo is the filename.

However, portability is an increasingly important issue. CC recognises the standard
file naming conventions and performs the appropriate transformations to
construct valid RISC OS pathnames. The following sections summarise the
conventions for referring to source, include, object and program files.

Rooted filenames

A filename is rooted if it is

● a RISC OS filename beginning with a ‘$’ or an ‘&’ – for example:

$.library.h.baricon &.h.myheader

● a UNIX filename beginning with a ‘/’ – for example:

/library/baricon.h

● a Windows filename beginning with a ‘\’ – for example:

\library\baricon.h

Rooted filenames are used by CC as absolute specifications of filenames,
independent of work directories, search paths, etc. Rooted UNIX or Windows
filenames are converted into the RISC OS syntax and prefix forms.

Source files

The CC and C++ tools specify the source files to be compiled on the command line
they construct and pass to the underlying programs. Dragging a source file to the
CC SetUp dialogue box specifies the file as an absolute rooted filename.

Make uses a makefile to specify the source files; their pathnames are normally
given relative to the work directory. C source files will be looked for in the
subdirectory c of the work directory. To aid portability, a file specified as foo.c in
a makefile will be looked for in @.c.foo, where @ means the work directory. C++
source files are similarly looked for in the subdirectory c++.
16

CC and C++
Include files

The way in which the compiler searches for included files is dealt with in detail in
the section Include file searching on page 18. Here we describe the issues of naming
header files and how to name them in #include lines in your C and C++ program
source.

Include files are often headers for libraries, and are incorporated by issuing the
#include directive – dealt with by the preprocessor – at the start of a source file.
For instance, in the C HelloW example:

#include <stdio.h>

By convention, header files are placed in subdirectory h. This convention is
followed here. You can use subdirectory h of the work directory for your own
header files, which can be incorporated with a source line like:

#include "myfile.h"

Note that both the example filenames stdio.h and myfile.h are in suffix form
rather than RISC OS prefix form. This is because you can make use of Acorn
C/C++’s filename processing to interpret these, leaving program lines which do not
need altering to port them to machines expecting suffixes.

To facilitate the porting of code from UNIX and Windows to RISC OS, UNIX-style
and Windows-style filenames are translated to equivalent RISC OS-style filenames.

For example:

../include/defs.h is translated to ^.include.h.defs

..\cls\hash.h is translated to ^.cls.h.hash
includes.h is translated to h.includes

but:

system.defs is translated to system.defs

In the same way, the lists of directory names given as arguments to the compiler’s
Include and Default path SetUp options (see below) are translated to RISC OS
format before being used, in the rare event that this is necessary.

Object files

If you use the CC or C++ tool to compile a single file with the SetUp dialogue box
option Compile only enabled, you use a standard Save As dialogue box to save the
resultant object file.Otherwise the object files created by the compiler are instead
stored in the o subdirectory of the work directory. Thus the result of compiling
c.sieve will be found in o.sieve.
17

Include file searching
Program files

If you haven’t enabled the Compile only option on the CC or C++ tool’s SetUp
menu, the tool compiles sources to object files, and then links them with the C
library stubs to produce an executable program file. You may find it convenient to
save this program file in the work directory itself – there is no conventional suffix
for these.

Compilation list files

If you enable the Listing option on the CC tool’s SetUp menu, then for each
compiled source file the CC tool creates a compilation listing file in the l
subdirectory of the work directory. Thus compiling c.sieve with Listing enabled
will by default result in the list file l.sieve being created.

The C++ tool does not have a Listing option.

Assembly list files

If the CC or C++ tool’s SetUp menu option Assembler is enabled, no object code is
generated. Instead, an assembly listing of the code is created. If only one assembly
listing file is produced, you save it from a standard Save As dialogue box. If more
than one is produced these are placed in the subdirectory s of the work directory.
Thus compiling c.sieve with Assembler enabled can result in the assembly
language file s.sieve being created.

Filename validity

The compiler does not check whether the filenames you give are acceptable –
whether they contain only valid characters and are of acceptable length – this is
done by the filing system.

Include file searching

The process of converting text C or C++ source to linkable object files of binary
code can be seen as a pipeline of several processes. The first stage is preprocessing
the source. It is at this stage that the text of header files is brought in at the
position of #include directives in the source text.

The preprocessor – which is used by both the CC and C++ tools – handles
#include directives of two forms:

#include <filename>

or

#include "filename"
18

CC and C++
You will normally include four types of header file:

● headers for the standard parts of the C library

● headers for the non-standard parts of the C library

● headers for the other libraries supplied with Acorn C/C++

● headers for your own include files.

A special feature of the Acorn C/C++ system is that the standard headers are built
into the compiler, and are used by default. By writing the filename in the angle
bracket form, you indicate that the include file is a system file, and thus ensure that
the compiler looks first in its built-in filing system. Of the common types of header
above, only the headers for the standard parts of the C library should be referred to
as system files in angle brackets. Writing the filename in the double quote form
indicates that the include file is a user file.

The headers for the non-standard parts of the main C library – kernel, pragmas,
SWIs and varargs – are not built in to the compiler; nor are the headers for the
other libraries supplied with Acorn C/C++. However, by default the CC and C++
tools both set the Include icon on their SetUp dialogue box to C:. This makes the
preprocessor use the value of the C$Path system variable to find the headers for
the standard libraries supplied in AcornC/C++.Export.APCS-32.Lib.

You can include headers for other libraries by adding the parent of the h directory
holding them to the Include writable icon on the tool’s SetUp dialogue box. The
easiest way to do so is to drag the included directory’s icon from a directory display
to the writable field.

As mentioned before, you can use the subdirectory h of the work directory for the
last common type of header file – your own header files, which you refer to as user
files with directives such as:

#include "myfile.h"

This is all you need to know for basic use of CC with largely default options. The
rest of this section provides a level of detail useful for reference or studying if you
wish to use CC in a non-standard way.
19

Include file searching
Reference section

The way in which the preprocessor looks for included files depends on three
factors:

● whether the filename is rooted

● whether the filename in the #include directive is between angle brackets <> or
double quotes ""

● use of the Include and Default path SetUp options (including the special
filename :mem).

If a filename is not rooted (as defined earlier) the preprocessor looks for it in a
sequence of directories called the search path.

Search path

The order of directories in the search path is as follows:

1 The compiler’s own in-memory filing system.

This is only searched for #include <filename> directives when you have not
enabled the SetUp menu’s Default path option.

2 The current place (see the section Nested includes on page 20).

This is only searched for #include "filename" directives.

3 Arguments to the SetUp dialogue box’s Include option, if used.

As noted above, this is set to C: by default, and so the standard library
directories in AcornC/C++.Export.APCS-32.Lib will be searched.

4 The system search path:

● The path given as an argument to the Default path SetUp menu option
(see below), if this is enabled; otherwise

● The value of the system variable C$Libroot, if this is set; otherwise

● $.Clib.

Nested includes

The current place is the directory containing the source file (C or C++ source, or
#included header) currently being processed by the compiler. Often, this will be
the work directory.

When a file is found relative to an element of the search path, the name of the
directory containing that file becomes the new current place. When the compiler
has finished processing that file it restores the old current place. So at any given
instant, there is a stack of current places corresponding to the stack of nested
#includes.
20

CC and C++
For example, suppose the current place is $.include and the compiler is seeking
the #included file "sys.defs.h" (or "sys.h.defs", "sys/defs.h", etc).
Now suppose this is found as:

$.include.sys.h.defs.

Then the new current place becomes $.include.sys, and files #included by
h.defs, whose names are not rooted, will be sought relative to
$.include.sys.

This is the search rule used by BSD UNIX systems. If you wish, you can disable the
stacking of current places using the SetUp menu option Features with the
argument k, to get the search rule described originally by Kernighan and Ritchie in
The C Programming Language. Then all non-rooted user includes are sought relative
to the directory containing the source file being compiled.

In all this, the penultimate .c, .c++ and .h components of the path are omitted.
These are logically part of the filename – a filename extension – not logically part
of the directory structure. However, directory names other than c, c++, h, o and s
are not so recognised (as filename extensions) and are used ‘as is’. For example,
the name sys.new.defs is exactly that: it is not translated to sys.defs.new
and, if it is found, the new part of the name does become part of the new current
path.

Use of :mem

You can use the SetUp menu option Default path to provide your own system
search path, as mentioned in step 4 of the section Search path above. The
preprocessor will then use the argument you give to the Default path option as
the system search path. You will only require this feature if you use
implementations of the C library other than those provided with the Acorn C
system.

Use of the Default path option also prevents a #include <filename>
directive being first searched for in the in-memory filing system (see step 1 of the
section Search path above). It can be reinstated by using the pseudo-filename :mem
as an argument to the Default path or Include options. If :mem is included in the
search path in this way, its position in the path is as specified – not necessarily first
– so you can take complete control over where the compiler looks for #included
files.
21

The SetUp dialogue box
Use of C$Libroot

C$Libroot is an environment variable that you can use to provide your own
system search path, as shown in step 4 of the section Search path above. It is not
needed for normal use of the compiler.

If C$Libroot is set, and you have not used the Default path option, the
preprocessor will use the variable’s value as the system search path. By default,
C$Libroot is not set.

To set the value of C$Libroot to, for example, "$.MyLib", at the command line
type:

*Set C$Libroot $.MyLib

This variable is also used by the Acorn C/C++ system as the library search path, if
set. With the example given, the compiler will now look for include files in
$.mylib.h, and for libraries in $.mylib.o.

The SetUp dialogue box

Clicking Select on the tool’s icon bar icon or dragging a source file from a directory
display to this icon brings up the tool’s SetUp dialogue box:

Source

This writable icon in the SetUp dialogue box contains the names of the source files
to be compiled.

When the SetUp box is obtained by clicking on the tool’s main icon, it comes up
with this icon containing its previous setting. You can thus repeat your previous
compilation by just clicking on the Run button.

If the SetUp box appears as a result of dragging a source file to the main icon, the
writable Source icon appears containing the new source file name.
22

CC and C++
When the SetUp box appears the Source icon has input focus, and can be edited in
the normal RISC OS fashion. If you select a further source file in a directory display
and drag it to this writable icon, its name is added to a list of those already there.

If you drag pre-compiled or pre-assembled object files to the Source icon, they are
included in the set of object files linked together in an integral link step after the
source files themselves have been compiled to object files.

Include

This SetUp dialogue box icon adds specified directories to the list of places which
are searched for #include files. The directories in the Include icon are searched
in the order in which they are given. The path should end with the name of a
directory, with no .h, which is added automatically.

The default setting of Include is to C:. This makes the preprocessor search for
headers in the directories listed in the RISC OS environment variable C$Path, set
by AcornC/C++.!SetPaths. The directories listed are those that hold all the
libraries supplied with the product in AcornC/C++.Export.APCS-32.Lib.

For more details of how to use #include lines and places searched for headers –
both before and after those in this Include list – see the section File naming and
placing conventions on page 15.

Compile only

This option switches off or on the linking of object files. When enabled, the link
step is not performed, and the tools output object files. If you’re only compiling
one source file, you drag the object file produced from a Save as dialogue box.
Otherwise, multiple files are saved in the o subdirectory of the work directory.

If not enabled, both CC and C++ instead perform an integral link step, linking any
object files produced by compilation to any additional ones dragged to the Source
icon, and library files, producing an executable program file. You control the saving
of this from a Save as dialogue box.

Compile only is not enabled by default.
23

The SetUp dialogue box
Preprocess only

This option is not available for the C++ tool.

If this option is enabled, only the preprocessor phase of the compiler is executed.
The output from the preprocessor is sent to the standard output window. The
standard non-interactive tool output window save facility is useful here to save this
output to a file or SrcEdit window. By default, comments are stripped from the
output, but see the SetUp menu option Keep comments on page 26.

Preprocess only is not enabled by default.

Debug

This option switches on or off production of debugging tables. When enabled,
extra information is included in the resultant object files and image files which
enables source level debugging of the linked image by the DDT debugger. If this
option is disabled, any image file finally produced can only be debugged at
machine level.

Enabling debug also disables the instruction scheduler, such that instructions are
output in the sequence that the source code implies. There will also be no inlining
performed, so calls to functions that would ordinarily be inlined will be left as calls
to discrete functions.

If you are only compiling the source to object files, you must remember to enable
debugging in the Link tool when you link them. If you don’t, you’ll lose the
debugging information produced by the CC and C++ tools.

Debug is not enabled by default.

Throwback

This option switches editor throwback on or off. When enabled, if the DDEUtils
module and SrcEdit are loaded, any compilation errors cause the editor to display
an error browser. Double clicking Select on an error line in this browser makes the
editor display the source file containing the error, with the offending line
highlighted. See the chapter SrcEdit on page 73 of the accompanying Desktop Tools
guide for more details.

Throwback is on by default.
24

CC and C++
The SetUp menu

Clicking Menu on the SetUp dialogue box brings up the SetUp menu. The CC menu
contains some options not available on the C++ menu, but the two menus are
otherwise virtually identical:

The options on this menu are described in the following subsections.

The command line

The Command line item at the top of the SetUp menu leads to a small dialogue
box in which the command line equivalent of the current SetUp options is
displayed:

Clicking on the Run action button in this dialogue box starts compilation in the
same way as that in the main SetUp box. Pressing Return in the writable icon in
this box has the same effect. Before starting compilation from the command line
box, you can edit the command line textually, although this is not normally useful.
25

The SetUp menu
Controlling the preprocessor

Default path

The Default path entry on the SetUp menu leads to a writable icon in which you
specify a comma-separated list of directories to be searched for included files:

This overrides the system include path with the list of directories. You can specify
the memory file system in the list by using the name :mem (in any case). An
example is:

myhdrs,:mem,$.proj.public.hdrs

For more details of the system include path and searching for include files in
general, see the section File naming and placing conventions on page 15.

Default path is not enabled by default.

Keep comments

This option is not available for the C++ tool.

When enabled in conjunction with Preprocess only, this option retains comments
in preprocessor output.

Keep comments is not enabled by default.
26

CC and C++
Define

The Define option on the SetUp menu leads to a writable icon in which you can
predefine preprocessor macros:

You can enter two forms of macro predefinition:

sym=value
sym

These both define sym as a preprocessor macro for the compilation. The two forms
are equivalent to the lines:

#define sym value
#define sym 1

at the head of the source file.

You can enter multiple symbols as a space-separated list.

Define is not enabled by default.
27

The SetUp menu
Undefine

The Undefine option on the SetUp menu leads to a writable icon in which you can
undefine preprocessor macros:

You enter the name of the macro concerned, eg:

sym

Use of this option is then equivalent to the line:

#undef sym

at the head of the source file.

You can enter multiple symbols as a space-separated list.

Undefine is not enabled by default.
28

CC and C++
Controlling code generation

Debug options

This option is not available for the C++ tool.

The Debug options option on the SetUp menu leads to a writable item in which
you enter a set of modifier letters:

The modifier letters limit the debugging tables generated in response to enabling
the Debug option on the SetUp dialogue box. The letters recognised are:

You can use these letters in any combination.

Debug options is not enabled by default.

f generate information on functions and top-level variables (outside
functions) only

l generate information only describing each line in the file

v Generate information only describing all variables
29

The SetUp menu
Profile

This option is not available for the C++ tool.

Enabling this SetUp menu option causes the compiler to generate code to count
the number of times each function is executed. This is called profiling.

The counts can be printed by calling _mapstore() to print them to stderr or by
calling _fmapstore("filename") to print them to a named file of your choice.
You should do this just before the final statement of your program.

Profiling is not supported by the shared C library, so you must link programs to be
profiled with ANSILib. If you wish, you can link with both Stubs and ANSILib, in
which case only the code for _mapstore() and _fmapstore() will be included
from ANSILib; your program will continue to use the shared C library, and will be
much smaller than if linked with ANSILib alone.

The printed counts are lists of lineno: count pairs. The lineno value is the
number of a line in your source code, and the count value is the number of times
it was executed. Note that lineno is ambiguous: it may refer to a line in a
#include file. However, this is rare and usually causes no confusion.

Provided you didn’t compile your program with the Features option with f as an
argument, blocks of counts will be interspersed with function names. In the simple
cases, the output reduces to a list of line-pairs like:

function

lineno: count, where count is the number of times function was executed.

If you use the SetUp menu option Others to add the text -px to the command line,
profiling of basic blocks within functions is performed in addition to profiling the
functions. If you do this, the lineno values within each function relate to the start
of each basic block. Sometimes, a statement (such as a for statement) may
generate more than one basic block, so there can be two different counts for the
same line.

Profiled programs run slowly. For example, when compiled with Profile enabled,
Dhrystone 1.1 runs at about 5⁄8 speed; when compiled -px it runs at only about 3⁄8
speed.

There is no way, in this release of C, to relate execution counts to the proportion of
time spent in each section of code. Nor is there any tool for annotating a source
listing with profile counts. Future releases of C may address these issues.

Profile is not enabled by default.
30

CC and C++
Assembler

If this SetUp menu option is enabled, no object code is generated and, naturally,
no attempt is make to link it. If only one assembly listing file is produced, you save
it from a standard save dialogue box. If more than one is produced these are
placed in the subdirectory s of the work directory.

Assembler is not enabled by default.

Module code

This SetUp menu option must be enabled when compiling code for linking into a
RISC OS relocatable module, otherwise it should not be enabled. When enabled,
code is produced which allows the module’s static data to be separated from its
code, hence be multiply instantiated.

Module code is not enabled by default.

Controlling the linker

Libraries

The Libraries option on the SetUp menu leads to a writable icon in which you
specify a comma-separated list of filenames of libraries to be used in an integral
link step:

The libraries specified with this option are used instead of the standard one
(C:o.Stubs), not in addition to it.

Libraries is enabled by default.
31

The SetUp menu
Using the Features menu option

Features

The Features option on the SetUp menu leads to a small writable icon in which
you can specify additional compiler features with single modifier letters:

This entry controls a variety of compiler features, including certain checks on your
code more rigorous than usual. At least one of the following modifier letters must
be entered if Features are enabled:

a Check for certain types of data flow anomalies. The compiler performs
data flow analysis as part of code generation. The checks enabled by this
option can sometimes indicate when an automatic variable has been
used before it has been assigned a value.

b Enable verbose mode. This forces the compiler to always print the
summary line when it is finished even if there are no warnings or errors:

x warnings, y errors, z serious errors

c Enable the Limited pcc option. This allows characters after #else and
#endif preprocessor directives (treated as comments), and explicit
casts of integers to function as pointers (forbidden by C90 and later ISO
standards). These features are often required in order to use pcc-style
include files in C90, C99 or C18 mode.
32

CC and C++
e Check that external names used within the file are still unique when
reduced to six case-insensitive characters. Some old linkers only provide
six significant characters in their symbol tables. This can cause
problems with clashes if a system uses two names such as getExpr1
and getExpr2, which are only unique in the eighth character. The
check can only be made within one compilation unit (source file) so
cannot catch all such problems. Acorn C and C++ allow external names
of up to 256 characters, so this is a portability aid.

f Do not embed function names in the code area. The compiler does this
to make the output produced by the stack backtrace function (which is
the default signal handler) and _mapstore() more readable.
Removing the names from the compiler makes the code slightly smaller
(typically 5%) at the expense of less meaningful backtraces and
_mapstore() outputs.

h Check that all external objects are declared in some included header
file, and that all static objects are used within the compilation unit in
which they are defined. These checks support good modular
programming practices.

i In the listing file (see the Listing option) include the lines from any files
included with directives of the form:

#include "file"

j As above, but for files included by lines of the form:

#include <file>

k Use K&R search rules for nested #include directives (the ‘current
place’ is defined by the original source file and is not stacked; see the
section File naming and placing conventions on page 15 for details).

l Instruct the compiler not to use the link register, lr, as a work register.
When this feature is enabled lr is only used as a link register for function
entry and exit. This may aid debugging in some situations.

m Give a warning for preprocessor symbols that are defined but not used
during the compilation.

n Embed function names in the code area (see f feature). This improves
the readability of the output produced by the stack backtrace run time
support function and the _mapstore() function (see Profile on
page 30).

However, it does increase the size of the code area slightly (around 5%).
In general it is not useful to specify the f feature with Profile (i.e. -p).

p Report on explicit casts of integers into pointers, eg:

char *cp = (char *) anInteger;

Implicit casts are reported anyway, unless suppressed by the Suppress
warnings option.
33

The SetUp menu
When writing high-quality production software, you are encouraged to use at least
the fah Features options in the later stages of program development (the extra
diagnostics produced can be annoying in the earlier stages).

Features is not enabled by default.

Handling warnings and errors

Suppress warnings

The Suppress warnings option on the SetUp menu prevents warnings from
appearing.

For the C++ tool, all warnings are suppressed.

r Let longjmp corrupt register variables. This will result in some local
variables being corrupted and it should therefore be used with caution.
This option is not compliant with the ISO C standard.

s Annotate the assembly output with addresses and compiled op-codes.
This feature is only relevant when generating assembly output as
described under -S in Code generation options on page 50.

t Allow enums to be different sizes, depending on their values. They can
be contained in a signed char, unsigned char, signed short, unsigned
short, signed int or unsigned int.

u By default, the source text as ‘seen’ by the compiler after preprocessing
(expansion) is listed. If this feature is specified then the unexpanded
source text, as written by the user, is listed. Consider the line

p = NULL;

By default, this will be listed as p=(0);. With the u feature specified, it
will be listed as p=NULL;.

v Report on all unused declarations, including those from standard
headers.

w Allow string literals to be writable, as expected by some UNIX code, by
allocating them in the program’s data area rather than the notionally
read-only code area.

y Only allow enums to be stored as ints. This is the opposite of the t
feature and is the default setting for backwards compatibility.

z Cause in-line SWI calls (via __swi) to save the link register, lr, if
necessary as it may be corrupted by the SWI. This enables in-line SWI
calls to be used from code running in SVC mode.
34

CC and C++
For the CC tool, this menu option leads to a writable icon in which you can enter a
set of modifier letters:

The modifier letters specify various kinds of warning message to be suppressed by
CC. Usually the compiler is very free with its warnings, as this tends to indicate
potential portability or other problems. However, too many such messages can be
a nuisance in the early stages of porting a program from old-style C, so you can
disable them. There are also a couple of warnings that are off by default and can be
enabled by a letter prefixed by a +.
35

The SetUp menu
The modifier letters for CC are:

a Suppress Use of = in a condition context warning. This is given
when the compiler encounters statements such as if (a=b) {...
where it is quite possible that == was intended.

b Suppress Unknown pragma warnings.

c In earlier versions of the compiler this suppressed the Use of
reserved C++ keyword warning. This option is now obsolete, instead
warnings about C++ keywords are now disabled by default and can be
enabled by +u (see below).

d Suppress Old-style function and Deprecated declaration
foo() - give arg types warnings. Use of old-style function
declarations is deprecated in ANSI/ISO C, and in a future version of the
standard this feature may be removed. However, it is useful sometimes to
suppress this warning when porting old code.

e Suppress cast between function pointer and non-function
object warning.

f Suppress Inventing "extern int foo()" message. This may be
useful when compiling old-style C as if it were standard C.

h Suppress warnings of format parameters not being declared as const in
functions which take format parameters (printf, sscanf, _swix etc.).
This warning is only ever issued in fussy/strict mode and never in pcc mode
(see -fussy and -pcc in Keyword options on page 45).

l Suppress Lower precision in wider context warning. This
warning is issued when an expression on the right hand side of an
assignment is of a narrower width than the object it is being assigned to
with a potential loss of precision (for example multiplying two ints and
assigning the result to a long long).

n Suppress Implicit narrowing cast and Lower precision in
wider context warnings. This warning is issued when the compiler
detects a cast of an expression to an object of narrower width (eg long to
int, float to int). This can cause problems with loss of precision for certain
values.

p Suppress non-ANSI #include <...> warning. ANSI require that
#include <...> should only be used for standard headers, but it can
be useful to disable this warning when compiling code which does not
conform to this aspect of the standard.

r Suppress _swi format warnings. The _swix and _swix calls are used
to pass paramters as registers to Software Interrupts routines. By default
the compiler checks that the number of registers specified matches the
number of arguments and warns if not.
36

CC and C++
If you enter a space in the writable icon, then Select or Return, all warning
messages from CC are suppressed.

Suppress errors

This option is not available for the C++ tool.

The Suppress errors option on the SetUp menu leads to a writable icon in which
you can enter a set of modifier letters:

s In earlier versions of the compiler this option suppressed the Module
has initialisation to static data warnings. Since this is now
allowed, these warnings are no longer generated and this option is
redundant.

v Suppress Implicit return in non-void context warning. This is
most often caused by a return from a function which was assumed to
return int (because no other type was specified) but is in fact being used as
a void function.

x Disable Declared but not used warnings which are shown when
functions or variables are declared but never used within their scope.

z Suppress Undefined macro in #if - treated as 0 warnings.

+g Enables warnings about unguarded or wrongly guarded header files.

+u Enables warnings about C++ keywords. This replaces the old c

option, which is now obsolescent.
37

The SetUp menu
These modifier letters can be used to force CC to accept C source which would
normally produce errors. If any of these options are needed, it means that the C
source in question does not conform to the C standard (CC normally generates
precisely the diagnostics required by the standard).

The modifier letters are:

Errors to file

This option is not available for the C++ tool.

Errors to file allows you to specify a file to which error messages are output for
later inspection:

c Suppresses all implicit cast errors, e.g. ‘implicit cast of non-0 int to pointer’.

f Suppresses errors for unclean casts such as short to pointer. This option is
not currently implemented in the compiler, although it was included in
previous versions of the documentation.

i Suppresses syntax checking for #if. This option is not currently
implemented in the compiler, although it was in previous versions of the
documentation.

p Suppresses the error which occurs if there are extraneous characters at the
end of a preprocessor line.

z Suppresses the error if a zero-length array is used.
38

CC and C++
Selecting the C dialect

ISO C90

This option is not available for the C++ tool.

Enabling this SetUp menu option switches to using C90 instead of C18 which is the
default. This makes the compiler conform to the ISO 9899:1990 standard and the
C99 and C18 features described in C99 features on page 97 and C18 features on
page 112 are unavailable. This makes the compiler behave like the Acorn C release
5 compiler, although it shouldn’t be necessary to select this mode to compile old
programs.

This option changes the syntax that is acceptable to the compiler, but the default
header and library files are still used.

ISO C99

This option is not available for the C++ tool.

Enabling this SetUp menu option switches to using C99 instead of C18 which is the
default. This makes the compiler conform to the ISO 9899:1999 standard and the
C18 features described in C18 features on page 112 are unavailable. This should only
be necessary to compile old programs.

This option changes the syntax that is acceptable to the compiler, but the default
header and library files are still used.

UNIX pcc

This option is not available for the C++ tool.

Enabling this SetUp menu option switches to compiling ‘portable C compiler’ C
rather than ANSI/ISO C. This is based on the original Kernighan and Ritchie (K&R)
definition of C, and is the dialect used on UNIX systems such as Acorn’s RISC iX
product. This option changes the syntax that is acceptable to the compiler, but the
default header and library files are still used. See the section on this option in the
chapter Portability on page 325 for more details.

UNIX pcc is not enabled by default.
39

The SetUp menu
Listings

Listing

This option is not available for the C++ tool.

Enabling this SetUp menu option causes a listing file to be created. This consists
of lines of source interleaved with error and warning messages. You can get finer
control over the contents of this file using the Features option (see page 32).

Listing is not enabled by default.

Choosing your work directory

Work directory

The Work directory entry on the SetUp menu leads to a writable icon in which you
specify the work directory:

The effect of this option is described in the section File naming and placing conventions
on page 15.

The default Work directory setting is ^.
40

CC and C++
Specifying other command line options

Others

The Others option on the SetUp menu leads to a writable icon in which you can
add an arbitrary extra section of text to the command line to be passed to the
relevant underlying program:

This facility is useful if you wish to use any feature which is not supported by any of
the other entries on the SetUp dialogue box and menu. This may be because the
feature is used very little, or because it may not be supported in the future.

For a full description of command line options, see Command lines on page 44.
41

Output messages
Output messages

The CC and C++ tools output text messages as they proceed. These include
preprocessed source (see Preprocess only), warning and error messages. By
default any such text is directed into a scrollable output window:

This window is read-only; you can scroll up and down to view progress, but you
cannot edit the text without first saving it. Clicking Select on the scrollable part of
this window has no effect, to indicate this.

The contents of the window illustrated above are typical of those you see from a
successful compilation – the title line of the compiler with version number,
followed by no error messages.

Clicking Adjust on the close icon of the output window switches to the output
summary dialogue box. This presents a reminder of the tool running (CC or C++),
the status of the task (Running, Paused, Completed or Aborted), the time when the
task was started and the number of lines of output that have been generated (ie
those that are displayed by the output window):

Clicking Adjust on the close icon of the summary box returns to the output
window.

Both the above output displays follow the standard pattern of those of all the
non-interactive Desktop tools. The common features of the non-interactive
Desktop tools are covered in more detail in the chapter General features on page 103
of the accompanying Desktop Tools guide. Both tools’ output displays and the menus
brought up by clicking Menu on them offer the standard features allowing you to
abort, pause, or continue execution (if the execution hasn’t completed); and to
save output text to a file, or repeat execution.
42

CC and C++
Error messages appear in the output viewer, with copies in the editor error browser
when throwback is working. The appendixes C errors and warnings on page 385 and
C++ errors and warnings on page 421 contain more details for interpreting error
messages.

Preprocessed source appearing in the output window is often very large for
compilation of complex source files. The scrolling of the output window is useful to
view it, and to investigate it with the full facilities of the source editor, you can save
the output text straight into the editor by dragging the output file icon to the
SrcEdit main icon on the icon bar (providing Wimp$Scrap is properly set on your
machine).

The icon bar menu

Clicking Menu on either the CC or the C++ icon on the icon bar gives the following
menu:

Save options saves all the tool’s current options, including those set both from the
SetUp dialogue box and from the Options item on this menu. When you restart the
tool it is initialised with these options rather than the defaults.

The Options item on the main menu allows you to enable Auto run, Auto save or
start the output display as either a text window (default) or summary box. When
Auto run is enabled, dragging a source file to the tool’s icon starts a compilation
immediately with the current options, rather than displaying the SetUp box first.
When Auto save is enabled, output object files are saved to suitable places
automatically without producing a save dialogue box for you to drag the file from.
Both Auto run and Auto save are off by default.

For a description of each option in the tool’s menu see the chapter General features
on page 103 of the accompanying Desktop Tools user guide.
43

Command lines
Command lines

For normal use you do not need to understand the syntax of the underlying CC and
C++ programs’ command lines, as they are generated automatically for you from
the SetUp dialogue box and menu settings.

The syntax of the command lines is:

cc «options» filenames
c++ «options» filenames

By default, the C compiler and C++ translator look for source files, and create
object, assembler and listing files, beneath the current work directory.

Many aspects of the programs’ operation can be controlled via command-line
options. All options are prefixed by a minus sign. There are two classes of option:
keywords and flags:

● Keywords are recognised in upper case or lower case.

● A flag is a single letter, sometimes followed by an argument. Whenever this is
the case, the C compiler allows white space to be inserted between the flag
letter and the argument. However, this is not always true of other C compilers,
so in the following subsections we only list the form that would be acceptable
to a UNIX C compiler. Similarly, we only use the case of the letter that would
be accepted by a UNIX C compiler.

By using the conventions common to many C compilers, you can build
portable makefiles that you can easily move between different environments.

The options are listed below. Where an option merely gives a page reference to a
desktop equivalent, you should see that page for full details. Should you need to
use any of the more esoteric options that have no direct desktop equivalent,
remember that you can always add them to the SetUp menu’s Others option (see
Specifying other command line options on page 41).

Where an option is shaded, we recommend that you don’t use it with C++. You may
use all options with CC, save for the Translator options on page 49, which are used by
CFront and hence irrelevant to CC.
44

CC and C++
Keyword options

Command line option Description

-help Outputs a summary of the command line options.

-c18 Allow C99 features as described in C99 features on
page 97 and C18 features as described in C18
features on page 112. This is the default option and
if -c18 is specified on the command line it
overrides -c90, -c99, -ansi and -pcc if any of
those options are specified too.

-ansi Same as -c18

-c90 Equivalent to ISO C90 in the SetUp menu; see
page 39. C99 and C18 features are disabled.

-c99 Equivalent to ISO C99 in the SetUp menu; see
page 39. C18 features are disabled.

-pcc Equivalent to UNIX pcc in SetUp menu; see
page 39.

-fussy or -strict Be extra strict about enforcing conformance to the
C standard or to pcc conventions (e.g. prohibit the
volatile qualifier in -pcc mode).

-list Equivalent to Errors to file in SetUp menu; see
page 38.

-via file Reads in extra command line arguments from the
given filename.

-errors file Equivalent to Listing in SetUp menu; see page 40.

-littleend or -li Compile code suitable for a little-endian Arm.

-bigend or -be Compile code suitable for a big-endian Arm.

-apcs «3»qualifiers Specify which variant of the Arm Procedure Call
Standard is to be used by the compiler. At least
one qualifier must be present, and there must be
no space between qualifiers. The following
qualifiers are permitted:

/26«bit» 26 bit APCS variant.

/32«bit» 32 bit APCS variant (default).

/reent«rant» Reentrant APCS variant.

/nonreent«rant» Non reentrant APCS variant.

/swst«ackcheck» Software stack checking APCS variant.

/noswst«ackcheck» No software stack checking APCS variant.

/fp Use a dedicated frame-pointer register.

/nofp Do not use a frame-pointer.
45

Command lines
/fpe2 Floating point emulator 2 compatibility.

/fpe3 Floating point emulator 3 compatibility (default).

/fpr«egargs» Floating point arguments passed in floating point
registers.

/nofpr«egargs» Floating point arguments are not passed in
floating point registers.

/inter«work» Support Arm/Thumb interworking.

-arch arch Selects the processor architecture for which the
code will be compiled. Supported values are 2,
2a, 3, 3g, 3m, 4, 4xm, 4t, 4txm, 5, 5xm, 5t,
5txm, 5te, 5tej, 5texp, 5tewmmx, 5tewmmx2,
6, 6k, 6t2, 6z, 7, 7-a, 7-r, 7-a.security,
8-a.32, 8-a.32.crypto, 8.1-a.32,
8.1-a.32.crypto, 8.2-a.32,
8.2-a.32.crypto, 8.3-a.32,
8.3-a.32.crypto, 8.4-a.32,
8.4-a.32.crypto, 8.5-a.32,
8.5-a.32.crypto, 8.6-a.32 and
8.6-a.32.crypto.

Command line option Description
46

CC and C++
-cpu cpu Selects the CPU for which the code will be
optimised. The parameter may be any of the
architecture names listed above or any of the
following CPU names: arm2, arm3, arm6,
arm600, arm610, arm7, arm7m, arm7dm,
arm7tm, arm7tm-s, arm7tdm, arm7tdmi,
arm7tdmi-s, arm700, arm704, arm710t,
arm720t, arm740t, arm7ej-s, arm8, arm810,
strongarm, strongarm1, sa-110, sa-1100,
sa-1110, arm9tdmi, arm910t, arm920t,
arm922t, arm9e-s, arm9ej-s, arm926ej-s,
arm1176jzf-s, xscale, or cortex-a8.

When both -cpu and -arch are used
simultaneously, the compiler will optimise for the
processor/architecture given by -cpu, but
generate code that will run on the architecture
given by -arch. This allows the user to request
optimising for a new processor while not ruling
out the code being run on an older one. -arch
and -cpu can be specified in either order; only
the last -cpu and last -arch given on the
command line are significant.

The following examples should make this clearer:

default code optimised for XScale but runs on v3.

-cpu 7TDMI code optimised for 7TDMI, runs on v4T.

-cpu 5 code optimised for a typical v5 processor, runs on
v5.

-arch 5 same as -cpu 5.

-arch 3 -cpu
XScale

code optimised for XScale but runs on v3.

-cpu 2 -arch 5TE code optimised for 2, but requires v5TE
(nonsensical, but allowed).

-fpu fpu Selects the floating point unit for which the code
will be compiled. Supported values are fpa and
none.
Attempting to use floating point operations when
none is selected will result in an error.

Command line option Description
47

Command lines
-memaccess types This option allows (or disallows) specific types of
memory access; it is used to indicate capabilities
of the memory system beyond the Arm core. An
access type is enabled by prefixing it with a + and
disabled by prefixing it with a -. The default
setting is equivalent to specifying -memaccess
+L22+S22-L41, and the three supported types
are:

L22 Load of a halfword from a halfword-aligned
address

S22 Store of a halfword to a halfword-aligned address

L41 Load of a (rotated) word from a byte-aligned
address

-depend dependfile Saves include file dependency lists, which are
suitable for use with ‘make’ utilities.

-throwback Equivalent to Throwback option icon in SetUp
dialogue box; see page 24.

-desktop directory Equivalent to Work directory in SetUp menu; see
page 40.

-C++ Assume C++ code is being processed. This option
is only used by the C++ program, when invoking
the compiler to pre-process C++ source before
translation, and when compiling the generated C.

When preprocessing under the -E option,
comment handling is changed to correctly deal
with C++’s ‘//’ comments (which are terminated
by the end of the source line), and #pragma lines
are passed through to the preprocessor output.

During the C compilation stage, use of this flag
disables certain warnings (most notably ‘no
side-effect in void context’, and messages about
unused variables), otherwise produced by some
rather odd code constructs in the generated C. It
also arranges that in any warning or error reports,
the original (type-qualified) C++ source names
are printed rather than the modified names
CFront generates in order to implement
overloading.

Command line option Description
48

CC and C++
Preprocessor options

Translator options

These options affect the operation of CFront.

-ccversion version Specify the minimum compiler version number
that may be used where version is the required
version number * 100. For example, specifying
-ccversion 542 would generate a Compiler
too old error if the compiler version was below
5.42 (but note that this feature was only
introduced in cc version 5.11).

Command line option Description

-Idirectory Equivalent to Include option icon in SetUp
dialogue box; see page 23.

-jdirectories Equivalent to Default path in SetUp menu; see
page 26.

-E Equivalent to Preprocess only option icon in
SetUp dialogue box; see page 24.

-C Equivalent to Keep comments in SetUp menu;
see page 26.

-M If this flag is specified, only the preprocessor
phase of the compiler is executed (as with cc -E)
but the only output produced is a list, on the
standard output stream, of makefile dependency
lines suitable for use by a make utility. This can be
redirected to a file using standard UNIX notation.
For example:

cc -M xxx.c >> Makefile.

-Dsymbol«=value» Equivalent to Define in SetUp menu; see page 27.

-Usymbol Equivalent to Undefine in SetUp menu; see
page 28.

Command line option Description

+v Print commands as CFront executes them

+w Equivalent to Suppress warnings in C++’s SetUp
menu; see page 34. (Suppress warnings also
uses CC’s -W option.)

+p Pedantic – compile strict C++

Command line option Description
49

Command lines
Code generation options

If you are using C++, we recommend you only use the following from the code
generation options below: -o, -g, -Ospace, -Otime, -S and -zM.

+g Equivalent to Debug option icon in C++’s SetUp
dialogue box; see page 24. (Debug also uses CC’s
-g option.)

-F Send CFront output to stdout; do not compile it

Command line option Description

-o file The argument to the -o flag gives the name of the
file which will hold the final output of the
compilation step. In conjunction with -c, it gives
the name of the object file; in conjunction with -S,
it gives the name of the assembly language file.
Otherwise, it names the final output of the link
step.

-g«options» Equivalent to Debug option icon in SetUp
dialogue box and Debug options in SetUp menu;
see pages 24 and 29.

-Ospace Optimise for image size at the expense of
execution time

-Otime Optimise for execution time at the expense of
image size

-p«options» Equivalent to Profile in SetUp menu; see page 30.

-S Equivalent to Assembler in SetUp menu; see
page 31.

-zM Equivalent to Module code in SetUp menu; see
page 31.

Command line option Description
50

CC and C++
Linker options

Warning and error message options

If you are using C++, we recommend you only use the following from the warning
and error message options below: -W.

Additional feature options

If you are using C++, we recommend you only use the following from the additional
feature options below: -zr and -f.

Command line option Description

-c Equivalent to Compile only option icon in SetUp
dialogue box; see page 23.

-llibraries Equivalent to Libraries in SetUp menu; see
page 31.

Command line option Description

-Woptions Equivalent to Suppress warnings in SetUp menu;
see page 34.

-eoptions Equivalent to Suppress errors in SetUp menu;
see page 37.

Command line option Description

-zpAlphaNum This flag can be used to emulate #pragma
directives. The letter and digit which follow it are
the same characters that would follow the '-' of a
#pragma directive. See #pragma directives on
page 119 for details.

-zrnumber This flag allows the size of (most) LDMs and (all)
STMs to be controlled between the limits of 3 and
16 registers transferred. This can be used to help
control interrupt latency where this is critical.

-ffeatures Equivalent to Features in SetUp menu; see
page 32.
51

Command lines
Global data options

These options can be used to tune the compiler's handling of global data.

Command line option Description

-zzZI threshold size Sets the value of the zero-initialised data
threshold size. The compiler will place
uninitialised global variables in the Zero
Initialised (ZI) data area if their size is greater than
ZI threshold size bytes.

For example, you can force uninitialised global
variables of any size to be placed in the ZI data
area by specifying -zz0, though this may increase
your code size. Alternatively you could use
-zz100000000 to prevent any variables being
placed in the ZI data area.

Use this option in combination with -zt to avoid
increased code size. Option -zzt provides a
convenient shorthand. The default threshold size
is 8 bytes; this was 100 bytes in older versions of
the compiler.

-zt Disallows tentative declarations. If this option is
specified the compiler assumes that any
occurrence of a top level construct such as int i; is
a definition without initialiser, rather than a
tentative definition. Any subsequent definition
with initialiser in the same scope will generate an
error. This may fault code that conforms to the ISO
standard.

This option is useful in combination with the -zz
option.

-zztZI threshold
size

Combines the -zt and -zz options. For example,
specify -zzt0 to force the compiler to disallow
tentative declarations and place all uninitialised
global variables in the ZI data area.
52

CC and C++
Worked examples

Several examples of C and C++ programs included with the Desktop Development
Environment are worked through in this guide and in the Desktop Tools guide. A
collection of examples are listed here illustrating various points and styles of
working.

The following examples are in the directory Sources.DDE-Examples.C/C++,
each in a subdirectory with the name of the example. For each program, we give a
‘recipe’ for how to compile, link and run the program. Filenames are given relative
to the subdirectory containing each example unless otherwise stated. It is
assumed that you have read the preceding parts of this chapter. For more details of
the tool Make, see the chapter Make on page 59 of the accompanying Desktop Tools
user guide. When you enter any command lines given below, you must first ensure
that the currently-selected directory is the subdirectory containing the example
being tried.

There are some further less trivial examples that we omit here. These show you
how to implement more esoteric features, mainly involving interworking C and/or
C++ with assembler. They are described elsewhere in the Acorn C/C++ manual set,
together with necessary supporting technical information.

CHello

Purpose: The standard most trivial C program. Try it as an exercise.

Source: c.HelloW

Compile using: default CC SetUp options

Run by: double clicking on HelloW

Clean up by: deleting HelloW and o.HelloW

C++Hello

Purpose: The standard most trivial C++ program. Try it as an exercise.

Source: c++.HelloW

Compile using: default C++ SetUp options

Run by: double clicking on HelloW

Clean up by: deleting HelloW and o.HelloW
53

Worked examples
Sieve

Purpose: The Sieve of Eratosthenes is often presented as a standard
benchmark, though it is not very meaningful in this context.

Source: c.Sieve

Compile using: default CC SetUp options

Run by: double clicking on Sieve

Clean up by: deleting Sieve and o.Sieve

Dhrystone 2.1

Purpose: Dhrystone 2.1 is the standard integer benchmark. Its results
require careful interpretation (it often overstates the real
performance of machines). Try as a first exercise in using
Makefiles.

Sources: h.dhry
c.dhry_1
c.dhry_2

Makefile: Makefile

Build by: double clicking on Mk.

Run by: double clicking on Dhrystone

Reply with any number in the range 20000 to 250000 to the
prompt for number of iterations. Try a big number such as
200000 and time the execution with a stopwatch or sweep
second hand to confirm the claimed performance. Note how
performance depends on screen mode.

Rebuild by: double clicking on Mk again (try altering some of the options
in Makefile between rebuilds: eg compile in UNIX pcc
mode by altering CFLAGS.

Clean up by: double clicking on MkClean.

CModule

Purpose: To illustrate how to implement a module in C. You can also
use it as another exercise in using Makefiles. For more details
on constructing relocatable modules in C see the chapter How
to write relocatable modules in C on page 351.

Sources: c.CModule CModuleHdr
54

CC and C++
Build using: CC of c.CModule with options Compile only and Module
code enabled, saving output object file as o.CModule.
CMHG of cmhg.CModuleHdr to o.CModuleHdr. Link of
o.CModule, o.CModuleHdr and C:CLib.o.Stubs with
Module enabled to the output file CModule.

or by: double clicking on Mk.

Run from: the command line using CModule

Test from: the command line using:

help tm1
help tm2
tm1 hello
tm2 1 2 3 4 5
tm1 1 2 3
tm2 hello

(try other combinations too)

*BASIC
> SYS &88000 : REM should give an error
> SYS &88001 : REM should give divide by 0 error
> SYS &88002 : REM no error, just a message
> SYS &88003 : REM no error, just a message
> SYS &88004 : REM same as &88000...

(now repeat some of these after issuing some invalid
* commands...)

>*foo
> SYS &88002

etc.

>QUIT

Clean up by: from the command line typing: RMKill TestCModule
deleting CModule, o.CModule and o.CModuleHdr or by
running MkClean.
55

Worked examples
Desktop application examples

The desktop applications !Hyper, !MinApp and !TBoxCalc and the various versions
of SaveAs found in the Sources.DDE-Examples.Toolbox directory are all too
complex to be described here in great detail.

They are best built by double clicking on the MkInstall file found in each
example’s source directory, which builds the application and installs it in the
AcornC/C++.Install directory. They can be run by double clicking on their
application icons.
56

2 CMHG

MHG (the C Module Header Generator) is a desktop tool which provides an easy

interface to the CMHG program that Acorn C/C++ installs in your computer’s

library. The CMHG tool constructs command lines and passes them to the CMHG
program. By using CMHG you can write a RISC OS relocatable module entirely in C
without having to use Arm assembly language.

Every relocatable module has at its start (ie the part that loads into memory at its
lowest address) a header table pointing to various items of data and program.
Most of the items pointed to are optional, the pointers being zero if not needed.
When writing a relocatable module in assembly language you lay this table out
yourself, but when writing in C, you use CMHG to generate this for you. In addition
to generating a module header, CMHG also inserts small standard routines to, for
example, initialise the C language library support and make service call handling
efficient.

To construct a relocatable module you write a number of routines in C with
standard prototypes, some of these routines to be called with the processor in
supervisor (SVC) mode. These are accompanied by a text description file written in
a special syntax which CMHG understands. For details of this language and the
specifications of the C routines, see the chapter How to write relocatable modules in C on
page 351. For more details of relocatable module headers, see the chapter entitled
Modules in the RISC OS Programmer’s Reference Manual. For some hints about memory
usage from relocatable module code, see the RISC OS Programmer’s Reference Manual.

The rest of this chapter explains the (simple) controls of the CMHG tool. CMHG is
one of the non-interactive desktop tools, its desktop user interface being provided
by the FrontEnd module. It shares many common features with the other
non-interactive tools. These common features are described in the chapter General
features on page 103 of the accompanying Desktop Tools guide.

A note about Make

The Make tool (see the chapter Make on page 59 of the Desktop Tools guide) can also
construct command lines for the underlying CMHG program. You’ll find it a better
tool for managing large projects. However, much of what is in this chapter is
relevant, since Make sets options for the CMHG program with the CMHG tool’s
user interface.

C

57

Starting CMHG
Starting CMHG

To start the CMHG tool, first open the Apps.DDE directory display, then double
click on !CMHG. Its icon appears on the icon bar:

Clicking Select on this icon, or dragging a CMHG description file from a directory
display to this icon, brings up the SetUp dialogue box, from which you control the
running of CMHG:

The Source writable icon is for the name of the description file to be processed. If
you displayed the SetUp dialogue box by clicking on the CMHG icon bar icon, you
will want to fill this in by dragging a CMHG description file from a directory display
to this icon before running CMHG.

The Include icon adds specified directories to the list of places which are searched
for #include files when the Preprocess option is selected. This works in exactly
the same way as for the compiler - see Include on page 23 for details.

The CMHG tool can produce two types of output file. Selecting the AOF option
means that it will create an object file. You link this with the object files compiled
from your C code to produce your relocatable module. Selecting the C Header
option causes CMHG to instead produce a C header file that contains #defines
of constants for the commands declared in the description file, and function
prototypes that you will need in your C code to interface with the code created by
CMHG.

The Preprocess option instructs CMHG to pre-process the CMHG file using the C
preprocessor. This is particularly useful for including C header files so that
symbolic names can be used in place of numeric values. It also allows the use of
conditional directives such as #ifdef.

Throwback enables editor throwback to be used when any errors are found in the
CMHG file being processed.
58

CMHG
Clicking Menu on the SetUp dialogue box brings up the CMHG SetUp menu, which
contains the following items:

Command line enables you to examine or edit the actual command line. For more
information on this option see thesection Command line options on page 61.

The Define option on the SetUp menu leads to a writable icon in which you can
predefine preprocessor macros. This works in exactly the same way as for the
compiler - see Define on page 27 for details.

The Others option leads to a writable icon in which you can add an arbitrary extra
section of text to the command line to be passed to the underlying CMHG
program. This facility is useful if you wish to use any feature which is not supported
by any of the other entries on the SetUp dialogue box and menu. For a full
description of the available options, see Command line options on page 61.

The icon bar menu

Clicking Menu on the CMHG application icon on the icon bar gives access to the
following options:

For a description of each option in the application menu see the chapter General
features on page 103 of the accompanying Desktop Tools guide.

Example output

The following is an example CMHG description file, similar to that used to
construct the FrontEnd module, which is itself a relocatable module written in C:

; Purpose: module header for the generalised front end module ;

module-is-runnable: ; module start code

initialisation-code: FrontEnd_init

service-call-handler: FrontEnd_services 0x11 ; service-memory
59

Command line interface
title-string: FrontEnd

help-string: FrontEnd 1.00

command-keyword-table: FrontEnd_commands
FrontEnd_Start(min-args: 4, max-args: 5,

help-text: "Help text\n"),
FrontEnd_Setup(min-args: 8, max-args: 8,

help-text: "Help text\n")

swi-chunk-base-number: 0x081400

Running CMHG displays any error messages in the standard text output window
for non-interactive tools. If all goes well, as it should do if you try CMHG with the
above description file, this window is empty:

The output file produced is an object file. You link this with the object files
compiled from your C code to produce your relocatable module.

Command line interface

For normal use you do not need to understand the syntax of the underlying CMHG
program’s command line, as it is generated automatically for you from the SetUp
dialogue box and menu settings.

The syntax of the CMHG command line is:

cmhg «options» descfile «objfile «defsfile»»

descfile Filename of the CMHG description file.

objfile Filename of the output object file to link with your objects to form
a relocatable module.

defsfile Filename of the output definitions header file, giving constants
for the commands in the description file.
60

CMHG
Command line options

For example:

cmhg -p -DDEBUG -IC:,TCPIPLibs: -o o.InetHdr InetHdr

Command line option Description

-help List command line options with brief
explanations.

-depend Passed on to cc in order to generate dependency
information for amu.

-o objfile The name of the final object file.

-d defsfile The name of the C header file CMHG will generate.

-p Instruct CMHG to pre-process the CMHG file
using the C preprocessor. This is particularly
useful for including C header files so that
symbolic names can be used in place of numeric
values.

-Idirectory Specifies which directory or directories are to be
searched for #include files. A list of directories
may be given, separated by spaces and they are
searched in the order given. The default include
path (if this option is not used) is C: as for the C
compiler.

This option behaves like the Include option icon
in the C compiler’s SetUp dialogue box; see Include
on page 23 for more details.

-Dsymbol«=value» Defines the preprocessor macro symbol.
Multiple symbols can be defined using a
space-separated list. This behaves like Define in
the C compiler’s SetUp menu; see Define on
page 27 for details.

-Usymbol Undefines the preprocessor macro symbol.
Multiple symbols can be defined using a
space-separated list. This behaves like Undefine
in the C compiler’s SetUp menu; see Undefine on
page 28 for details.

-26bit Generate 26-bit code.

-32bit Generate 32-bit code (default).

-throwback Support error processing by Desktop Tools.
61

Command line interface
62

3 ToANSI

oANSI is a desktop tool which provides an easy interface to the ToANSI

program that Acorn C/C++ installs in your computer’s library. The ToANSI tool

constructs command lines and passes them to the ToANSI program. ToANSI helps
convert program source written in the PCC style of C to program source in the ANSI
style of C. PCC is the UNIX Portable C Compiler, and closely follows K&R C, as
defined by B Kernighan and D Ritchie in their book The C Programming Language.

ToANSI enables you to write (with care) programs that can be automatically
converted between the PCC and ANSI dialects of C, hence assisting you in
constructing easily portable programs. The associated tool ToPCC makes
approximately the reverse translations to ToANSI. For more details of portability
issues, see the chapter Portability on page 325. The changes that ToANSI makes to C
source are listed in the section ToANSI C translation below.

ToANSI is one of the non-interactive desktop tools, its desktop user interface being
provided by the FrontEnd module. It shares many common features with the other
non-interactive tools. These common features are described in the chapter General
features on page 103 of the accompanying Desktop Tools guide.

T

63

ToANSI C translation
ToANSI C translation

ToANSI makes the following transformations to C source code or header text:

● Function declarations with embedded comments are rewritten without the
comment tokens. This reverses the action of ToPCC with regard to function
declarations, rewriting

type foo(/* args */);

as

type foo(args);

This transformation is one which requires care in the use of ToANSI, as it can
result in invalid C being uncommented.

● Function definitions of the form

type foo(a1, a2)
type a1;
type a2;
{...}

are rewritten as

type foo(type a1, type a2)

● A va_alist in the function definition is translated to

...

● type foo() is rewritten as type foo(void).

● VoidStar (what ToPCC replaces void * with) is left untouched, as if it is
correctly typedef’d to something suitable, thereafter its use is correct in
both PCC and ANSI C.

● ToPCC rewrites unsigned and unsigned long constants using the
typecasts (unsigned) and (unsigned long). ToANSI does not reverse
this change, as this is not required for correct ANSI C.

Note that ToANSI performs only simple textual translations and is not able to
reliably diagnose C syntax errors, which may produce surprising results, so it is
best to use ToANSI only on code you already know compiles.
64

ToANSI
A note about Make

Since porting programs is usually a one-off process involving some
experimentation, only direct use of ToANSI makes sense. You cannot use ToANSI
from Make.

Starting ToANSI

To start the ToANSI tool, first open the Apps.DDE directory display, then double
click on !ToANSI. Its icon appears on the icon bar:

Clicking Select on this icon, or dragging a source file from a directory display to
this icon, brings up the SetUp dialogue box, from which you control the running of
ToANSI:

ToANSI has hardly any options for its use, so its interface is simpler than most of
the other Acorn C/C++ tools.

The File writable icon is for the name of the description file to be processed. If you
displayed the SetUp dialogue box by clicking on the ToANSI icon bar icon, you will
want to fill this in by dragging a source file from a directory display to this icon
before running ToANSI.

Clicking Menu on the SetUp dialogue box brings up the ToANSI SetUp menu,
which owing to the simplicity of ToANSI only has a single Command line item:
65

The icon bar menu
The icon bar menu

Clicking Menu on the ToANSI application icon on the icon bar gives access to the
following options:

For a description of each option in the application menu see the chapter General
features on page 103 of the accompanying Desktop Tools guide.

Example output

Running ToANSI displays any error messages in the standard text output window
for non-interactive tools. If all goes well this window is empty:

As an example of using the tool ToANSI, open an empty SrcEdit text window and
type the following example C source lines in it:

int foo(a, b)
float a;
double b;
{}

Check that your Wimp$Scrap environment variable is set to a sensible file name,
then save your new text file straight onto the ToANSI icon bar icon. Run ToANSI,
then save the output text file straight onto the SrcEdit icon bar icon. The translated
file looks like:

int foo(float a, double b)
{}
66

ToANSI
Command line interface

For normal use you do not need to understand the syntax of the underlying ToANSI
program’s command line, as it is generated automatically for you from the SetUp
dialogue box and menu settings.

The syntax of the ToANSI command line is:

toansi «options» «infile «outfile»»

options Options: the -d option describes ToANSI, and the -help option
gives the command line syntax and options.

infile Filename of the input C source or header text file, which defaults
to stdin.

outfile Filename of the output C source or header text file, which defaults
to stdout.
67

68

4 ToPCC

oPCC is a desktop tool which provides an easy interface to the ToPCC program

that Acorn C/C++ installs in your computer’s library. The ToPCC tool constructs

command lines and passes them to the ToPCC program. ToPCC helps convert
program source written in the ANSI style of C to program source in the PCC style of
C. PCC is the UNIX Portable C Compiler, and closely follows K&R C, as defined by B
Kernighan and D Ritchie in their book The C Programming Language.

ToPCC enables you to write (with care) programs that can be automatically
converted between the ANSI and PCC dialects of C, hence assisting you in
constructing easily portable programs. The associated tool ToANSI makes
approximately the reverse translations to ToPCC. For more details of portability
issues, see the chapter Portability on page 325. The changes that ToPCC makes to C
source are listed in the section ToPCC C translation below.

ToPCC is one of the non-interactive DDE tools, its desktop user interface being
provided by the FrontEnd module. It shares many common features with the other
non-interactive tools. These common features are described in the chapter General
features on page 103 of the accompanying Desktop Tools guide.

T

69

ToPCC C translation
ToPCC C translation

ToPCC makes the following transformations to C source code or header text:

● Function declarations of the form

type foo(args);

are rewritten as

type foo(/* args */);

Any comment tokens /* or */ in args are removed.

● Function definitions of the form

type foo(type a1, type a2) {...}

are rewritten as

type foo(a1, a2)
type a1;
type a2;

● A ... in the function definition is interpreted as int va_alist. Full
translation of variadic functions is not performed.

● type foo(void)

is rewritten as

type foo()

● Type void * is converted to VoidStar which can be typedef’d to
something suitable (eg char *).

● Unsigned and unsigned long constants are rewritten using the typecasts
(unsigned) and (unsigned long).

For example, 300ul becomes (unsigned long)300L.

Note that ToPCC performs only simple textual translations and is not able to
reliably diagnose C syntax errors, which may produce surprising results, so it is
best to use ToPCC only on code you already know compiles.

A note about Make

Since porting programs is usually a one-off process involving some
experimentation, only direct use of ToPCC makes sense. You cannot use ToPCC
from Make.
70

ToPCC
Starting ToPCC

To start the ToPCC tool, first open the Apps.DDE directory display, then double
click on !ToPCC. Its icon appears on the icon bar:

Clicking Select on this icon, or dragging a source file from a directory display to
this icon, brings up the SetUp dialogue box, from which you control the running of
ToPCC:

ToPCC has hardly any options for its use, so its interface is simpler than most of
the other Acorn C/C++ tools.

The File writable icon is for the name of the description file to be processed. If you
displayed the SetUp dialogue box by clicking on the ToPCC icon bar icon, you will
want to fill this in by dragging a source file from a directory display to this icon
before running ToPCC.

Clicking Menu on the SetUp dialogue box brings up the ToPCC SetUp menu:

Command line shows you the command line that will be passed to the underlying
ToPCC program; you can then alter it if necessary.
71

The icon bar menu
Options leads to a writable field in which you can specify one or more single letter
options:

These options are:

The icon bar menu

Clicking Menu on the ToPCC application icon on the icon bar gives access to the
following options:

For a description of each option in the application menu see the chapter General
features on page 103 of the accompanying Desktop Tools guide.

c Don’t remove the keyword const

e Don’t remove #error ... directives

l Don’t include #line ... directives

p Don’t remove #pragma ... directives

s Don’t remove keyword signed

t Don’t remove the second argument to va_start()

v Don’t remove the keyword volatile
72

ToPCC
Example output

Running ToPCC displays any error messages in the standard text output window
for non-interactive tools. If all goes well this window is empty:

As an example of using the tool ToPCC, open an empty SrcEdit text window and
type the following example C source line in it:

int foo(float a);

Check that your Wimp$Scrap environment variable is set to a sensible file name,
then save your new text file straight onto the ToPCC icon bar icon. Run ToPCC, then
save the output text file straight onto the SrcEdit icon bar icon. The translated file
looks like:

int foo(/* float a */);
73

Command line interface
Command line interface

For normal use you do not need to understand the syntax of the ToPCC command
line, as it is generated automatically for you from the SetUp dialogue box setting
before it is used.

The syntax of the ToPCC command line is:

topcc «options» «infile «outfile»»

options A minus ‘-’ followed by one or more letters controlling individual
features of the conversion; see page 72. As well as the options
listed there, the -d option describes ToPCC, and the -help
option gives the command line syntax and options.

infile Filename of the input C source or header text file, which defaults
to stdin.

outfile Filename of the output C source or header text file, which defaults
to stdout.
74

Part 2 – C language issues
75

76

5 C implementation details

corn C/C++ is a full implementation of the ANSI C89 language reference, also

known as ISO C90. In addition, it provides many of the ISO C99 and C18

features and library functions. For information on the C standards see The C
standards on page 7.

This chapter is split into parts, each of which details certain aspects of Acorn C’s
implementation.

● The first part – Implementation details on page 78 – gives details of those aspects
of the compiler which the ISO/IEC 9899:1999 standard identifies as
implementation-defined, and some other points of interest to programmers.
They are grouped by subject; the section Implementation limits on page 85 lists
the points required to be documented as set out in Annex E of the standard.

● The second part – Standard implementation definition on page 87 – discusses
aspects of the compiler which are not defined by the C standard, but are
implementation-defined and must be documented.

Annex J of the ISO/IEC 9899:1999 standard collects together information about
portability issues; section J.3 lists those points which are implementation
defined, and directs that each implementation shall document its behaviour in
each of the areas listed. This part corresponds to appendix J.3, answering the
points listed in the appendix, under the same headings and in the same order.

● The third part – C99 features on page 97 – describes the sub-set of C99 features
that are implemented in the compiler.

● The fourth part – C18 features on page 112 – describes the sub-set of C18
features that are implemented in the compiler.

● The fifth part – Extra features on page 119 – describes some machine-specific
features of the Acorn C compiler: #pragma directives, and special declaration
keywords for functions and variables.

A

77

Implementation details
Implementation details

Identifiers

Identifiers can be of any length. They are truncated by the compiler to 256
characters, all of which are significant (the standard requires a minimum of 31).

The source character set expected by the compiler is 7 bit ASCII, except that within
comments, string literals, and character constants, either the full ISO 8859-1
(Latin-1) 8 bit character set or UTF-8 are recognised, depending on the source
character set mode (see Pragmas controlling the source character set on page 121).

At run time, the C library processes the full ISO 8859-1 8 bit character set, except
that the default locale is the C locale (see the section Standard implementation
definition on page 87). The ctype functions therefore all return 0 when applied to
codes in the range 160–255. By calling setlocale(LC_CTYPE,"ISO8859-1")
you can cause the ctype functions such as isupper() and islower() to
behave as expected over the full 8 bit Latin alphabet, rather than just over the 7 bit
ASCII subset.

Upper and lower case characters are distinct in all identifiers, both internal and
external.

In -pcc and -fc modes an identifier may also contain a dollar character.

Data elements

The sizes of data elements are as follows:

Type Size in bits
char 8
short 16
int 32
long 32
long long 64
float 32
double 64
long double 64 (subject to future change)
all pointers 32

Integers are represented in two’s complement form.
78

C implementation details
Data items of type char are unsigned by default, though they may be explicitly
declared as signed char or unsigned char. (In -pcc mode there is no
signed keyword, so chars are signed by default and may be declared unsigned if
required.) Single-character constants are thus always positive.

Floating point quantities are stored in the IEEE format. In double and long double
quantities, the word containing the sign, the exponent and the most significant
part of the mantissa is stored at the lower machine address.

Limits: limits.h and float.h

The standard defines two header files, limits.h and float.h, which contain
constant declarations describing the ranges of values which can be represented by
the arithmetic types. The standard also defines minimum values for many of these
constants.

The following table sets out the values in these two headers on the Arm, and a brief
description of their significance. See the standard for a full definition of their
meanings.

Number of bits in smallest object that is not a bit field (i.e. a byte):

CHAR_BIT 8

Maximum number of bytes in a multi-byte character, for any supported locale:

MB_LEN_MAX 1

Numeric ranges of integer types:

The middle column gives the numerical value of each range’s endpoint, while the
right hand column gives the bit patterns (in hexadecimal) that would be
interpreted as this value in C. When entering constants you must be careful about
the size and signed-ness of the quantity. Furthermore, constants are interpreted
differently in decimal and hexadecimal/octal. See the ISO standard or any of the
recommended textbooks on the C programming language for more details.

Range End-point Hex representation

CHAR_MAX 255 0xff

CHAR_MIN 0 0x00

SCHAR_MAX 127 0x7f

SCHAR_MIN –128 0x80

UCHAR_MAX 255 0xff

SHRT_MAX 32767 0x7fff

SHRT_MIN –32768 0x8000

USHRT_MAX 65535 0xffff
79

Data elements
Characteristics of floating point:

The base (radix) of the Arm floating point number representation is 2, and floating
point addition rounds to nearest.

Ranges of floating types:

Ranges of base two exponents:

INT_MAX 2147483647 0x7fffffff

INT_MIN –2147483648 0x80000000

UINT_MAX 4294967295 0xffffffff

LONG_MAX 2147483647 0x7fffffff

LONG_MIN –2147483648 0x80000000

ULONG_MAX 4294967295 0xffffffff

LLONG_MIN -9223372036854775807 0x8000000000000000

LLONG_MAX +9223372036854775807 0x7fffffffffffffff

ULLONG_MAX 18446744073709551615 0xffffffffffffffff

FLT_RADIX 2

FLT_ROUNDS 1

FLT_MAX 3.40282347e+38F

FLT_MIN 1.17549435e-38F

DBL_MAX 1.79769313486231571e+308

DBL_MIN 2.22507385850720138e-308

LDBL_MAX 1.79769313486231571e+308

LDBL_MIN 2.22507385850720138e-308

FLT_MAX_EXP 128

FLT_MIN_EXP (-125)

DBL_MAX_EXP 1024

DBL_MIN_EXP (-1021)

LDBL_MAX_EXP 1024

LDBL_MIN_EXP (-1021)

Range End-point Hex representation
80

C implementation details
Ranges of base ten exponents:

Decimal digits of precision:

Digits (base two) in mantissa:

Smallest positive values such that (1.0 + x! = 1.0):

Structured data types

The standard leaves details of the layout of the components of structured data
types to each implementation. The following points apply to the Acorn C compiler:

● Structures are aligned on word boundaries.

● Structures are arranged with the first-named component at the lowest address.

● A component with a char type is packed into the next available byte.

● A component with a short type is aligned to the next even-addressed byte.

● All other arithmetic type components are word-aligned, as are pointers and
ints containing bitfields.

● The only valid type for bitfields are (signed) int, unsigned int and
_Bool. (In -pcc mode, char, unsigned char, short, unsigned short,
long and unsigned long are also accepted.)

FLT_MAX_10_EXP 38

FLT_MIN_10_EXP (-37)

DBL_MAX_10_EXP 308

DBL_MIN_10_EX (-307)

LDBL_MAX_10_EXP 308

LDBL_MIN_10_EXP (-307)

FLT_DIG 6

DBL_DIG 15

LDBL_DIG 15

FLT_MANT_DIG 24

DBL_MANT_DIG 53

LDBL_MANT_DIG 53

FLT_EPSILON 1.19209290e-7F

DBL_EPSILON 2.2204460492503131e-16

LDBL_EPSILON 2.2204460492503131e-16L
81

Structured data types
● A bitfield of type int is treated as unsigned by default (signed by default in
-pcc mode).

● A bitfield must be wholly contained within the 32 bits of an int.

● Bitfields are allocated within words so that the first field specified occupies the
lowest addressed bits of the word. (When configured little-endian, lowest
addressed means least significant; when configured big-endian, lowest
addressed means most significant.

Packed Structures

A packed struct is one in which there is neither padding between fields to ensure
the natural alignment of each field, nor trailing padding to ensure the natural
alignment of a following struct within an array.

Many applications read data from and write data to networks and computer buses
in formats defined by international standards and by other programs executing on
different processors. The data format is fixed. Data read and data to be written can
be precisely mapped in C using packed structs. However, packed structs cannot
support reading values of the wrong endianness.

On the Arm, access to unaligned data can be expensive (taking up to 7 instructions
and 2 extra work registers). Data accesses via packed structs should be minimised
to avoid performance loss. Generally, internal data structures should not be
packed.

There is no command-line option to change the default packing of structures.
Packed structures must be specified with the type qualifier: __packed.

__packed behaves as a type qualifier (like volatile) and may qualify any non
floating point type. Floating types may not be fields of packed structures.

A packed struct or union type must be declared explicitly. It is a different type from
the corresponding non packed type and its packedness is an attribute of its struct
tag (so __packed is more than just a type qualifier). Any variables declared using
a packed tag automatically inherit the packed attribute, so __packed does not
have to be specified:

__packed struct P { ... };

struct P pp; /* pp is a packed struct */

In consequence, the following will be faulted:

struct Foo { ... };

__packed struct Foo PackedFoo; /* illegal */

or
82

C implementation details
struct Foo { ... };

typedef __packed struct Foo PackedFoo; /* illegal */

This ensures that a packed struct can never be assignment compatible with an
unpacked struct. This could happen if __packed were merely a type qualifier like
volatile and const.

Each field of a packed struct or packed union inherits the packed qualifier. There
are no packed array types. A packed array is simply an array of objects of packed
type (there is no inter-element padding).

The effect of casting away __packed is undefined. For example:

int f(__packed int *px)
{

return *(int *)px; /* undefined behaviour */
}

A struct (or union) sub-field of a packed struct or union must be declared to have
packed struct (or packed union) type.

struct S {...};
__packed struct P {...};

struct T {
struct S ss; /* OK */
struct P pp; /* OK */

};

__packed struct Q {
struct S ss; /* faulted - sub-structs must be packed */
struct P pp; /* OK */

};

The sub-structs are abutted without any intermediate padding, and they contain
no internal padding themselves (because they must be packed).

__packed struct P { char c; int x; };
__packed struct {

struct P X;
char z;
struct P Y;

} Q;

0 1 2 3 4 5 6 7 8 9 10

c x z c x

Q

X Y

Byte
83

Pointers
Pointers

The following remarks apply to pointer types:

● Adjacent bytes have addresses which differ by one.

● The macro NULL expands to the value 0.

● Casting between integers and pointers results in no change of representation.

● The compiler warns of casts between pointers to functions and pointers to
data (but not in -pcc mode).

Pointer subtraction

When two pointers are subtracted, the difference is obtained as if by the
expression:

((int)a - (int)b) / (int)sizeof(type pointed to)

If the pointers point to objects whose size is no greater than four bytes, word
alignment of data ensures that the division will be exact in all cases. For longer
types, such as doubles and structures, the division may not be exact unless both
pointers are to elements of the same array. Moreover the quotient may be rounded
up or down at different times, leading to potential inconsistencies.

Arithmetic operations

The compiler performs all of the ‘usual arithmetic conversions’ set out in the
standard.

The following points apply to operations on the integral types:

● All signed integer arithmetic uses a two’s complement representation.

● Bitwise operations on signed integral types follow the rules which arise
naturally from two’s complement representation.

● Right shifts on signed quantities are arithmetic.

● Any value to be shifted is treated as a 32 bit value, unless of type long long in
which case it is regarded as a 64 bit value.

● The remainder on integer division has the same sign as the divisor.

● If a value of integral type is truncated to a shorter signed integral type, the
result is obtained by masking the original value to the length of the
destination, and then sign extending.

● Conversions between integral types never causes an exception to be raised.

● Integer overflow does not cause an exception to be raised.

● Integer division by zero causes an exception to be raised.
84

C implementation details
The following points apply to operations on floating types:

● When a double or long double is converted to a float, rounding is to the
nearest representable value.

● Conversions from floating to integral types cause exceptions to be raised only
if the value cannot be represented in a long int (or unsigned long int
in the case of conversion to an unsigned int).

● Floating point underflow is not detected; any operation which underflows
returns zero.

● Floating point overflow causes an exception to be raised.

● Floating point divide by zero causes an exception to be raised.

Expression evaluation

The compiler performs the ‘usual arithmetic conversions’ (promotions) set out in
the standard before evaluating any expression.

● The compiler may re-order expressions involving only associative and
commutative operators of equal precedence, even in the presence of
parentheses (e.g. a + (b – c) may be evaluated as (a + b) – c).

● Between sequence points, the compiler may evaluate expressions in any order,
regardless of parentheses. Thus the side effects of expressions between
sequence points may occur in any order.

● Similarly, the compiler may evaluate function arguments in any order.

● Any detail of order of evaluation not prescribed by the standard may vary
between releases of the Acorn C compiler.

Implementation limits

The C99 standard sets out certain minimum translation limits which a conforming
compiler must cope with; you should be aware of these if you are porting
applications to other compilers. A summary is given here. The ‘mem’ limit
indicates that no limit is imposed other than that of available memory.

Description Requirement Acorn C

Nesting levels of blocks 127 mem

Nesting levels of conditional inclusion 63 mem

Pointer, array and function declarators
modifying a basic type in a declaration

12 mem

Expressions nested by parentheses 63 mem
85

Implementation limits
Significant characters

in internal identifiers and macro names 63 256

in external identifiers 31 256

External identifiers in one source file 4095 mem

Identifiers with block scope in one block 511 mem

Macro identifiers in one source file 4095 mem

Parameters in one function definition/call 127 mem

Parameters in one macro definition/invocation 127 mem

Characters in one logical source line 4095 no limit

Characters in a string literal 4095 mem

Bytes in a single object 65535 mem

Nesting levels for #included files 15 mem

Case labels in a switch statement 1023 mem

Members in a single struct or union,
enumeration constants in a single enum

1023 mem

Nesting of struct/union in a single declaration 63 mem

Description Requirement Acorn C
86

C implementation details
Standard implementation definition

Translation (J.3.1)

Diagnostic messages produced by the compiler are of the form

"source-file", line #: severity: explanation

where severity is one of

● warning: not a diagnostic in the C standard sense, but an attempt by the
compiler to be helpful to you.

● error: a violation of the C specification from which the compiler was able to
recover by guessing your intentions.

● serious error: a violation of the C specification from which no recovery was
possible because the compiler could not reliably guess what you intended.

● fatal (for example, ‘not enough memory’): not really a diagnostic, but an
indication that the compiler’s limits have been exceeded or that the compiler
has detected a fault in itself.

Environment (J.3.2)

The mapping of a command line from the Arm-based environment into arguments
to main() is implementation-specific. The shared C library supports the
following:

● The arguments given to main() are the words of the command line (not
including I/O redirections, covered below), delimited by white space, except
where the white space is contained in double quotes. A white space character
is any character of which isspace is true. (Note that the RISC OS Command
Line Interpreter filters out some of these).

A double quote or backslash character (\) inside double quotes must be
preceded by a backslash character. An I/O redirection will not be recognised
inside double quotes.

The shared C library supports a pair of interactive devices, both called :tt, that
handle the keyboard and the VDU screen:

● No buffering is done on any stream connected to :tt unless I/O redirection
has taken place. If I/O redirection other than to :tt has taken place, full file
buffering is used except where both stdout and stderr have been
redirected to the same file, in which case line buffering is used.
87

Identifiers (J.3.3)
Using the shared C library, the standard input, output and error streams, stdin,
stdout, and stderr can be redirected at run-time in the ways shown below. For
example, if mycopy is a compiled and linked program which simply copies the
standard input to the standard output, the following line:

*mycopy < infile > outfile 2> errfile

runs the program, redirecting stdin to the file infile, stdout to the file
outfile and stderr to the file errfile.

The following shows the allowed redirections:

0< filename read stdin from filename
< filename read stdin from filename

1> filename write stdout to filename
> filename write stdout to filename

2> filename write stderr to filename
2>&1 write stderr to wherever stdout is currently going

>& filename write both stdout and stderr to filename
>> filename append stdout to filename
>>& filename append both stdout and stderr to filename
1>&2 write stdout to wherever stderr is currently going

Identifiers (J.3.3)

256 characters are significant in identifiers without external linkage. (Allowed
characters are letters, digits, and underscores.)

256 characters are significant in identifiers with external linkage. (Allowed
characters are letters, digits, and underscores.)

Case distinctions are significant in identifiers with external linkage.

In -pcc and -fc modes, the character ‘$’ is also valid in identifiers.

Characters (J.3.4)

The characters in the source character set are either ISO 8859-1 (Latin-1 Alphabet),
a superset of the ASCII character set, or UTF-8, depending on the source character
set mode (see Pragmas controlling the source character set on page 121). In Latin-1 mode
the printable characters are those in the range 32 to 126 and 160 to 255. Any
printable character may appear in a string or character constant, and in a
comment.

The Arm C library supports the ISO 8859-1 (Latin-1) character set, so the following
points hold:
88

C implementation details
● The execution character set is identical to the source character set.

● There are four chars/bytes in an int. If the Arm processor is configured to
operate with a little-endian memory system (as in RISC OS), the bytes are
ordered from least significant at the lowest address to most significant at the
highest address. If the Arm is configured to operate with a big-endian memory
system, the bytes are ordered from least significant at the highest address to
most significant at the lowest address.

● A character constant containing more than one character has the type int. Up
to four characters of the constant are represented in the integer value. The first
character contained in the constant occupies the lowest-addressed byte of the
integer value; up to three following characters are placed at ascending
addresses. Unused bytes are filled with the NULL (or /0) character.

● There are eight bits in a character in the execution character set.

● There are 32 bits in a wide character in the execution character set.

● All integer character constants that contain a single character or character
escape sequence are represented in the source and execution character set.

● Characters of the source character set in string literals and character constants
map identically into the execution character set.

● When the source character set is Latin-1 no locale is used to convert
multi-byte characters into the corresponding wide characters (codes) for a
wide character constant. When the source character set is UTF-8 wide
character strings and constants are converted from the UTF-8 in the source to
UCS-4.

● A plain char is treated as unsigned (but as signed in -pcc mode).

● Escape codes are:

Escape sequence Char value Description

\a 7 Attention (bell)

\b 8 Backspace

\f 12 Form feed

\n 10 Newline

\r 13 Carriage return

\t 9 Tab

\unnnn 0x0000nnnn UCS character in hexadecimal

\Unnnnnnnn 0xnnnnnnnn UCS character in hexadecimal

\v 11 Vertical tab

\xnn 0xnn ASCII code in hexadecimal

\nnn 0nnn ASCII code in octal
89

Integers (J.3.5)
Integers (J.3.5)

The representations and sets of values of the integral types are set out in the
section Data elements on page 78. Note also that:

● The result of converting an integer to a shorter signed integer, if the value
cannot be represented, is as if the bits in the original value which cannot be
represented in the final value are masked out, and the resulting integer
sign-extended. The same applies when you convert an unsigned integer to a
signed integer of equal length.

● Bitwise operations on signed integers yield the expected result given two’s
complement representation. No sign extension takes place.

● The sign of the remainder on integer division is the same as defined for the
function div().

● Right shift operations on signed integral types are arithmetic.

Floating point (J.3.6)

The representations and ranges of values of the floating point types have been
given in the section Data elements on page 78. Note also that:

● When a floating point number is converted to a shorter floating point one, it is
rounded to the nearest representable number.

● The properties of floating point arithmetic comply with IEC 559 which is
equivalent to IEEE 754 and IEC 60559.

● The default state of the FENV_ACCESS and FP_CONTRACT pragmas is off.

Arrays and pointers (J.3.7)

The ISO standard specifies three areas in which the behaviour of arrays and
pointers must be documented. The points to note are:

● The type size_t is defined as unsigned int.

● Casting pointers to integers and vice versa involves no change of
representation. Thus any integer obtained by casting from a pointer will be
positive.

● The type ptrdiff_t is defined as (signed) int.
90

C implementation details
Hints (J.3.8)

The register storage-class specifier

In the Acorn C compiler, you can declare any number of objects to have the storage
class register. Depending on which variant of the Arm Procedure Call Standard
is in use, there are between five and seven registers available. (There are six
available in the default APCS variant, as used by RISC OS.) Declaring more than
this number of objects with register storage class must result in at least one of
them not being held in a register. It is advisable to declare no more than four. The
valid types are:

● any integer type

● any pointer type

● any integer-like structure (any one word struct or union in which all
addressable fields have the same address, or any one word structure
containing only bitfields).

Note that other variables, not declared with the register storage class, may be
held in registers for extended periods; and that register variables may be held
in memory for some periods.

Note also that there is a #pragma which assigns a file-scope variable to a
specified register everywhere within a compilation unit.

The inline function specifier

Any function that is declared with inline at the top-level before (or in) its
definition will be inlined when used subsequently in that translation unit. Inlining
does not occur if the -g or -Ospace options have been selected. An inline
declaration is ineffective if first seen after the function definition. In the event of
recursion during inline expansion, inlining stops after the first iteration.

Structures, unions, enumerations and bitfields (J.3.9)

The Acorn C compiler handles structures in the following way:

● When a member of a union is accessed using a member of a different type, the
resulting value can be predicted from the representation of the original type.
No error is given.

● Structures are aligned on word boundaries. Characters are aligned in bytes,
shorts on even numbered byte boundaries and all other types, except bitfields,
are aligned on word boundaries. Bitfields are sub-fields of ints, themselves
aligned on word boundaries.
91

Qualifiers (J.3.10)
● A ‘plain’ bitfield (declared as int) is treated as unsigned int (signed
int in -pcc mode).

● A bitfield which does not fit into the space remaining in the current int is
placed in the next int.

● The order of allocation of bitfields within ints is such that the first field
specified occupies the lowest addressed bits of the word.

● Bitfields do not straddle storage unit (int) boundaries.

● The integer type chosen to represent the values of an enumeration type is int
(signed int).

Qualifiers (J.3.10)

An object that has volatile-qualified type is accessed if any word or byte of it is
read or written. For volatile-qualified objects, reads and writes occur as directly
implied by the source code, in the order implied by the source code.

The effect of accessing a volatile-qualified short is undefined.

Preprocessing directives (J.3.11)

A single-character constant in a preprocessor directive cannot have a negative
value.

The standard header files are contained within the compiler itself. The mechanism
for translating the standard suffix notation to a RISC OS filename is described in
the chapter CC and C++ on page 11.

Quoted names for includable source files are supported. The rules for directory
searching are given in the chapter CC and C++ on page 11.

The recognized #pragma directives and their meaning are described in the section
#pragma directives on page 119.

The date and time of translation are always available, so __DATE__ and __TIME__
always give respectively the date and time.

Library functions (J.3.12)

The C library has or supports the following features:

● The macro NULL expands to the integer constant 0.

● If a program redefines a reserved external identifier, then an error may occur
when the program is linked with the standard libraries. If it is not linked with
standard libraries, then no error will be detected.
92

C implementation details
● The assert() function prints the following message:
*** assertion failed: expression, function fn, file filename, line line-no

and then calls the function abort(). If the program was compiled in C90
compatibility mode the function name is omitted.

● The functions isalnum(), isalpha(), isblank(), iscntrl(),
islower(), isprint(), isupper() and ispunct() usually test only for
characters whose values are in the range 0 to 127 (inclusive). Characters with
values greater than 127 return a result of 0 for all of these functions, except
iscntrl() which returns non-zero for 0 to 31, and 128 to 255.

After the call setlocale(LC_CTYPE,"ISO8859-1") the following statements
also apply to character codes and affect the results returned by the ctype functions:

● codes 128 to 159 are control characters

● codes 192 to 223 except 215 are upper case

● codes 224 to 255 except 247 are lower case

● codes 160 to 191, 215 and 247 are punctuation

The mathematical functions return the following values on domain errors:

Function Condition Returned value

log(x) x <= 0 -HUGE_VAL
log10(x) x <= 0 -HUGE_VAL
sqrt(x) x < 0 -HUGE_VAL
atan2(x,y) x = y = 0 -HUGE_VAL
asin(x) abs(x) > 1 -HUGE_VAL
acos(x) abs(x) > 1 -HUGE_VAL

Where -HUGE_VAL is written above, a number is returned which is defined in the
header math.h. Consult the errno variable for the error number.

The mathematical functions set errno to ERANGE on underflow range errors.

A domain error occurs if the second argument of fmod is zero, and
–HUGE_VAL returned.

The set of signals for the generic signal() function is as follows:

SIGABRT Abort
SIGFPE Arithmetic exception
SIGILL Illegal instruction
SIGINT Attention request from user
SIGSEGV Bad memory access
SIGTERM Termination request
SIGSTAK Stack overflow
93

Library functions (J.3.12)

The default handling of all recognised signals is to print a diagnostic message and
call exit. This default behaviour applies at program start-up.

When a signal occurs, if func points to a function, the equivalent of
signal(sig, SIG_DFL); is first executed.

If the SIGILL signal is received by a handler specified to the signal function, the
default handling is reset.

The C library also has the following characteristics relating to I/O:

● The last line of a text stream does not require a terminating newline character.

● Space characters written out to a text stream immediately before a newline
character do appear when read back in.

● No null characters are appended to a binary output stream.

● The file position indicator of an append mode stream is initially placed at the
end of the file.

● A write to a text stream does not cause the associated file to be truncated
beyond that point.

● The characteristics of file buffering are as intended by section 4.9.3 of the
standard.

● A zero-length file (on which no characters have been written by an output
stream) does exist.

● The validity of filenames is defined by the host computer’s filing system.

● The same file can be opened many times for reading, but only once for writing
or updating. A file cannot however be open for reading on one stream and for
writing or updating on another.

Note also the following points about library functions:

remove() Cannot remove an open file.

rename() The effect of calling the rename() function when the new
name already exists is dependent on the host filing system.
Not all renames are valid: examples of invalid renames
include

("net:file1","net:$.file2") and
("net:file1","adfs:file2").

fprintf() Prints %p arguments in hexadecimal format (lower case) as if
a precision of 8 had been specified. If the variant form (%#p) is
selected, the number is preceded by the character @.

fscanf() Treats %p arguments identically to %x arguments.

Always treats the character – in a %[argument as a literal
character.
94

C implementation details

ftell() and
fgetpos()

Set errno to the value of EDOM on failure.

perror() Generates the following messages:

Error: Message:

0 No error (errno = 0)

EDOM EDOM – function argument out of range

ERANGE ERANGE – function result not representable

ESIGNUM ESIGNUM – illegal signal number to signal()
or raise()

EILSEQ EILSEQ - character encoding error

EOVERFLOW EOVERFLOW - too large for data structure

EFBIG EFBIG - data written to file lost due to
exceeding file size limit

others Error code number has no associated
message

aligned_alloc(),
calloc(),
malloc() and
realloc()

If the size of the area requested is zero, non-NULL is returned
under RISC OS 3.10 and later.

abort() Closes all open files, and deletes all temporary files.

exit(),
quick_exit()

The status returned by exit is the same value that was
passed to it. For a definition of EXIT_SUCCESS and
EXIT_FAILURE refer to the header file stdlib.h.

getenv() Returns the value of the named RISC OS Environmental
variable, or NULL if the variable had no value. For example:

root = getenv ("C$libroot");
if (root == NULL) root = "$.arm.clib";

system() Used either to CHAIN to another application or built-in
command or to CALL one as a sub-program. When a program
is chained, all trace of the original program is removed from
memory and the chained program invoked. If a program is
called (which is the default if no CHAIN: or CALL: precedes
the program name – a change from Release 2), the calling
program and data are moved in memory to somewhere safe
and the callee loaded and started up. The return value from
the system() call is -2 (indicating a failure to invoke the
program) or the value of Sys$ReturnCode set by the called
program (0 indicates success).

strerror() The error messages given by this function are identical to
those given by the perror() function.
95

Architecture (J.3.13)

Architecture (J.3.13)

For details of the values assigned to the macros in <float.h>, <limits.h> and
<stdint.h> see the respective header file.

The order and encoding of bytes in any object is selected by the choice of
little-endian or big-endian as described on page 45. The number of bytes in any
object, which also determines the value of the result of the sizeof operator, is
listed in Data elements on page 78, and not repeated here.

Whether any extended alignments are supported, the contexts in which they are
supported, and valid alignment values (other than those returned by an
_Alignof expression for fundamental types) are given in Variable alignment on
page 114.

timespec_get() The only defined epoch is TIME_UTC.

clock() Returns the time taken by the program since its invocation, as
indicated by the host’s operating system.
96

C implementation details
C99 features
The current compiler supports the majority of features from the ISO C standard
(ISO/IEC 9899:1999) known as C99. This section summarises the C99 features that
are implemented – it includes most of the C99 compiler features and some of the
C99 library functions.

These C99 features are unavailable when the C90 or PCC compiler options are
used.

If any of the C99 library functions, long long variables or variable length arrays are
used it is essential that the SharedCLibrary 5.43 or later is loaded as described in
Ensuring the necessary components are present on page 348. It is also necessary to use the
C99 mode and generate code that uses the APCS-32 standard as these functions in
the C library will not work reliably in APCS-R mode (C99 and APCS-32 are the
default options for the compiler but may be overridden by command line or menu
options).

This section is not intended to be a tutorial on the C99 language. For more details
refer to a C99 programmer’s guide or the C99 standard – see section The C standards
on page 7.

C99 features implemented in the compiler

Boolean data type

C99 introduces the new bool data type, together with the constants true and
false via the stdbool.h header file. This header file may only be used when
using C99 mode (i.e. it is not available if using C90 or pcc modes).

For example:

#include <stdbool.h>
bool myflag = true;
struct flags { bool a:1; bool b:1 };

64-bit integers

The new C99 integer type long long is implemented using 64-bit integers and
long long literals are indicated via the ll or LL suffix (the LL suffix is
recommended as ll may be mis-read as eleven). Unsigned 64-bit integer literals
are indicated via the suffix ull or ULL.

The new format length modifier ll may be used with conversion specifiers d, i, o,
u, x, X to indicate that the type is long long.
97

C99 features implemented in the compiler
For example:

#include <stdlib.h>
#include <stdio.h>

unsigned long long int MSB_set = 1ULL <<63;
printf(“MSB_set is %lld in decimal\n”, MSB_set);
printf(“or %llx in hexadecimal\n”, MSB_set);

New library functions for long long integers include llabs, lldiv, strtoll and
strtoull in stdlib.h, and llrint and llround in math.h.

C++ style comments

Comments may now use the C++ syntax where the rest of the line following // is
regarded as a comment.

Interleaved statements and declarations

Statements and declarations can now be interleaved, allowing declarations to be
grouped with relevant statements.

foo();
int b = 5;
bar();

Declarations in for statements

Loop variables may now be declared in a for statement. For example:

for (int i=0; i<10; i++)

Variable-length arrays

Variable-length arrays, varying in multiple dimensions, may be passed as function
parameters. For example:

void fred(int w, int h, char d[h][w])
{

for (int y=0; y<h; y++)
for (int x=0; x<w; x++)

d[y][x] ^= 0x80;
}

Similarly arrays may be declared using an expression evaluated at run time, to
avoid using an explicit malloc(). For example:
98

C implementation details
void iconsprites(const char *filename)
{

char buffer[sizeof "IconSprites "+strlen(filename)];
sprintf(buffer, "IconSprites %s", filename);
_kernel_oscli(buffer);

}

Flexible array members

The last element of a structure may be an array of unspecified size and this is
referred to as a flexible array member:

struct flex
{

int len;
int data[];

};
struct flex *p=malloc(sizeof(struct flex)+10*sizeof(int));
for (int i=0; i<10; i++) p->data[i] = i;

The object pointed to by p behaves as if it had been declared as:

struct flex
{

int len;
int data[10];

} *p;

Flexible array members have incomplete type, but the structure containing them
does not and so the sizeof operator may not be applied to the array, but it may
be applied to the structure, as in the above example.

Structures with flexible array members cannot themselves be members of other
structures or array elements.

The assignment:

struct flex *s = *p;

will only copy len – it will not copy the flexible array member data .

Flexible array members may only appear as the last member of a struct that is
otherwise non-empty.

The behaviour is undefined if an element of the flexible array member is accessed
outside of the structure. ie. in the above example accessing p->data[10] would
have undefined results.
99

C99 features implemented in the compiler
Designated initialisers

Structure elements can now be initialised by name. For example:

enum { ZERO, ONE, TWO, THREE };
char num[] = { [ONE] = 1, [THREE] = 3 };

Nested structures can use the same feature, as follows:

struct mystruct person =
{

.sex = MALE,

.dob = { .day=14, .month = 6, .year=1965},

.name.christian = "Paul"
};

Type qualifiers and ‘static’ inside function array parameters

Type qualifiers and static declarations are now allowed in function array
parameters. For example:

void fred(char a[static 4], char b[const]);

is equivalent to:

void fred(char *a, char * const b);

with a guarantee that a points to at least 4 characters.

Non-constant structure initialisers

Automatic structure initialisers can now use expressions. For example:

struct mystruct a = { x + y, foo() };

This does not apply to static structure initialisers.

Name of current function

__func__ is pre-defined as the name of the current function (a character string
literal). For example:

printf("Crash in function %s\n", __func__);

Trailing comma allowed in enum declaration

Trailing commas are allowed in enum declarations. For example:

enum { ZERO, ONE, TWO, };

This may be useful when using macros to generate the strings.
100

C implementation details
New modifiers for printf, scanf and strftime

In addition to the %ll modifier mentioned above, modifiers are now available for
outputing floating point numbers in hexadecimal format and size_t and
intmax_t types. For example:

size_t a; intmax_t i; long long l; float f;
printf("a=%zu, i=%jd, l=%lld, f=0x%a\n", a, i, l, f);

The strftime function has been extended to provide the ISO 8601 week-based
year number. This is useful in conjunction with the week number, where the days of
each year preceding the first Monday of the year (if any) are regarded as belonging
to the previous year for the purpose of the week number. For example, Saturday
2nd January 1999 is in week 53 and week-based year 1998.

%g is replaced by the last 2 digits of the week-based year as a decimal number
(00-99). %G is replaced by the week-based year as a decimal number (e.g., 1998).

For example:

strftime(buffer, len, "ISO 8601 week number %G/%g", &tm);

snprintf and vsnprintf

int snprintf(char * restrict s, size_t n, const char*
restrict format, ...);

int vsnprintf(char * restrict s, size_t n, const char*
restrict format, va_list arg);

The new snprintf and vsnprintf functions in <stdio.h> work like
sprintf and vsprintf respectively but n specifies the length of the buffer. Up
to n-1 characters are written to the buffer and the string is always terminated with
a null. If n is zero, nothing is written and s may be a null pointer. snprintf
returns the number of characters that would have been written, excluding the null,
had there been no restriction on the length or a negative value if an encoding error
occurs.

(See Restricted pointers on page 103 for an explanation of the restrict keyword).

For example:

char buffer[20];
len = snprintf(buffer, sizeof buffer, "Result is %s", s);
if (len >= sizeof buffer) printf(“Buffer too small\n”);
101

C99 features implemented in the compiler
vscanf, vfscanf and vsscanf

int vscanf(const char * restrict format, va_list arg);

int vfscanf(FILE * restrict stream, const char * restrict
format, va_list arg);

int vsscanf(const char * restrict s, const char * restrict
format, va_list arg);

The new vscanf vfscanf and vsscanf functions in <stdio.h> work like
scanf, fscanf, and sscanf respectively, and the return values are the same,
except instead of being called with a variable number of arguments, they are called
with an argument list as defined in the <stdarg.h> header. The va_start
macro should have been called to set this up before the function call.

(See Restricted pointers on page 103 for an explanation of the restrict keyword).

Macros with a variable number of arguments

Macros may be defined with a variable number of arguments in the same way as
functions. They are also referred to as variadic macros.

If the argument list ends with ... then the trailing arguments, including any
separating commas, are merged to form a single item – the variable arguments.

The __VA_ARGS__ identifier is used to indicate where the variable arguments
should be inserted. For example:

#define dprintf(...) fprintf(stderr, __VA_ARGS__)

Inline functions

See The inline function specifier on page 91.

Compound literals

Compound literals are created using the notation:

(typename) { initialiser-list }

For example:

typedef struct point { int x, y; } point;
void draw(point);
draw((const point) { 2, 3 });
102

C implementation details
New and updated header files

The new C99 header files are:

The following header files have some new definitions:

See The C library on page 135 or the header files for more details.

Hexadecimal floating-point formats

Hexadecimal floating point constants can now be used. The letter ‘p’ is used to
indicate the exponent as a power of 2. For example:

double a = 0x0.8p0; // 0.5 in decimal

double a = 0x1.8p4; // 24.0 in decimal

The conversion specifiers a and A can be used in printf and scanf type
functions for input and output of hexadecimal floating point numbers. On output
the conversion specifier a is used to generate lower case hexadecimal digits and A
is used to generate upper case hexadecimal digits.

Restricted pointers

The restrict qualifier may be used with pointers to indicate to the compiler that
an object accessed through the pointer has a special association with the pointer.
The programmer is guaranteeing that all accesses to the object use the value of

<fenv.h> Floating point environment, including macros for
floating point exceptions.

<stdbool.h> Defines bool type and macros for true and false.
See Boolean data type on page 97

<stdint.h> Defines macros for integer data types with fixed or
minimum number of bits. For example int8_t may be
used to declare 8 bit signed integer variables;
uint_fast16_t may be used to declare unsigned 16
bit integer variables using the fastest suitable data type
available in the compiler.

<inttypes.h> Defines format specifiers for use with the integer types
defined in <stdint.h>. It also includes <stdint.h>.

<iso646.h> Defines suitable macros to enable C source code to be
written using limited character sets.

<math.h> Some new functions.

<float.h> Additional floating point characteristics.

<stdio.h> The snprintf and vscanf family of functions.
103

C99 features implemented in the compiler
that pointer, either directly or indirectly. This allows the compiler to optimise the
generated code as it knows that no other pointer variables can refer to the same
object.

For example:

// a and b are guaranteed to point to different
// objects, allowing better optimisation:
void fred(char *restrict a, char *restrict b);

This qualifier is purely for optimisation – removing the restrict qualifier should
not change the program’s behaviour.

The restrict qualifier permits extra optimisation in the Common
Subexpression Elimination (CSE) phase, by limiting the number of potential
pointer aliases.

The use of restrict does not actually guarantee any optimisations, and there are
many circumstances in which the restrict qualifier will be “lost” during the
compilation process, removing any potential benefit (although still generating
correct code). For example, only stand-alone restricted pointers are tracked;
restricted pointers that are members of a structure are not.

The compiler does not carry out all possible optimisations that restrict implies
(just as it does not carry out all possible optimisations generally).

The following examples show code snippets that do compile more efficiently
because of the addition of the restrict keyword.

Restricted pointers to const-qualified types

void g(void);

int f(const int data[restrict]) // equivalent to f(const int * restrict data)
{

int r = data[1];
g();
r += data[1];
return r;

}

Without the restrict keyword, data[1] would have to be reloaded after the call to
g(), as the compiler does not know whether data points to something that is
really constant, so g() could potentially change it.

In this example, the restrict tells the compiler that nothing the function
accesses through data can change, so the compiler will not reload data[1] after
g(). It is not permitted to modify an object accessed through a restricted pointer
to a const-qualified type during the lifetime of that pointer. So in this example, the
104

C implementation details
data[1] must not change throughout the call to f(). If the call to g() actually
did modify data[1], this would invoke undefined behaviour. On the other hand,
g() can modify data[0], because f() doesn't access it.

Restricted pointers cannot alias directly-accessed objects

int i;

int f(int * restrict p)
{

int r = i;
*p = 4;
r += i;
return r;

}

Without the restrict keyword, i would have to be reloaded after writing to p, as
it is possible that f was called as f(&i);

If an object is accessed through a restricted pointer, and is modified (by any
means), then all accesses to that object, during the lifetime of block the pointer is
declared in, must be through that pointer, else you invoke undefined behaviour. In
this example, this assures the compiler that p cannot point to i: the object *p is
modified through a restricted pointer, so it knows that the references to i (which
are not through that pointer) cannot be accessing the same object.

Another example:

char * restrict data;

void f(void)
{

for (int i = 0; i < 100; i++)
data[i] = 0;

}

Without the restrict qualifier, the data pointer would have to be reloaded every
iteration of the loop.

This optimisation is only performed for restricted pointers with file scope or
outermost function block, as the compiler cannot cope with cases like:
105

C99 features implemented in the compiler
int i;

void f(void)
{

int r = i;
{

int * restrict p = /* something */;
*p = 4;

}
r += i;
return r;

}

The restricted pointer p can legitimately point at i, as i is not accessed in p's
block, so i must be reloaded after that block.

Restricted pointers with the same scope cannot alias each other

int f(int * restrict p, int * restrict q)
{

int r = *p;
*q = 5;
r += *p;
return r;

}

Without restrict, q could equal p on entry, so the write to *q could change *p,
so *p would need to be loaded twice.

With the addition of restrict to both pointers, the compiler knows that the same
location cannot be accessed through both pointers.

At present, this optimisation only handles pointers with file scope, or in the
outermost block of a function (which includes parameters), due to full scope
information not being available in the CSE phase.

The scope rules are necessary, because assignments to restricted pointers in an
inner scope are permitted:

int f(int * restrict p)
{

int r = *p;
{

int * restrict p1 = p;
*p1 = 2;

}
r += *p; // *p has changed from original value
return r;

}

However, this is not permitted:
106

C implementation details
int f(int * restrict p)
{

int r = *p;
int * restrict p1 = p; // p1 has same scope as p - undefined behaviour
*p1 = 2;
r += *p;
return p;

}

so the compiler can legally assume that the write to *p1 didn't change to *p.

Conversely, this is allowed:

int f(int * restrict p)
{

int r = *p;
int *q = p;
*q = 5;
r += *p;
return p;

}

Because it is legal to assign a restricted pointer to a non-restricted one like this,
and the compiler does not perform data flow analysis for restrict, it is forced to
assume that any non-restricted pointer can alias a restricted one. As a result, in the
original example, both parameters p and q must be restrict-qualified to enable
optimisation. Without restricting both, the programmer could legally change q to
point to p after entry, and the compiler cannot deduce whether this has happened.

Pre-defined macros

The following macros are pre-defined to enable conditional compilation
dependent on the compiler version.

The macro __STDC__ is defined as 1 in C90 and later ISO standard modes. Future
versions may define it as 2 or 3 etc.

The macro __STDC_HOSTED__ is defined as 1 in C99 modes.

The macro __STDC_VERSION__ is defined as 199901L in C99 mode, but is
undefined in C90 mode. Note that this would normally indicate that the compiler
is fully compliant with the ISO/IEC 9899:1999 specification. This is not the case, but
since many of the C99 features are implemented it was decided that it is better to
define this macro than not.

The macros __STDC_IEC559__ and __STDC_IEC559_COMPLEX__ are
undefined. Although the compiler’s floating point arithmetic is IEC 559 compliant,
it does not meet all of the extra requirements in the IEC559 annex of the C99
standard.
107

C99 features implemented in the compiler
The macro __STDC_ISO_10646__ is defined as 200401L. This indicates that
wchar_t values are viewed as being ISO/IEC 10646 UCS character codes. As such,
Universal Character Names in wide character constants or strings always map
directly to the wchar_t with the same value.

Standard pragmas

The following three C99 standard pragmas are recognised:

#pragma STDC FENV_ACCESS OFF|ON|DEFAULT
#pragma STDC FP_CONTRACT OFF|ON|DEFAULT
#pragma STDC CX_LIMITED_RANGE OFF|ON|DEFAULT

The default for all three pragmas is OFF, but only FENV_ACCESS currently has any
effect; with it off, the compiler can assume that floating-point operations have no
side-effects, and ignores any possibility of exceptions or traps. With it on, care is
taken to ensure that all arithmetic occurs (as if) at run-time. For example

double fred(void)
{

return 1.0 / 3.0;
}

will compile to

fred
LDFD f0, =0.3333333333333333
MOV pc, lr

but

#include <fenv.h>

double fred(void)
{

#pragma STDC FENV_ACCESS ON
return 1.0 / 3.0;

}

will compile to

fred
MVFD f0, #1
DVFD f0, f0, #3
MOV pc, lr

to ensure that the inexact flag gets set (and with a view to rounding mode altering
the result). The compiler will still fold expressions that can be determined to raise
no exceptions (e.g. 1.0 / 2.0). Compile-time evaluation can also be forced thus:
108

C implementation details
double fred(void)
{

#pragma STDC FENV_ACCESS ON
static const double one_third = 1.0 / 3.0;
return one_third;

}

Other optimisations, particularly CSE, are effectively inhibited on floating-point
arithmetic if FENV_ACCESS is on.

In C90 mode, the compiler functions as before, and only considers overflow, invalid
operation and divide by zero exceptions as significant. Thus 1.0 / 0.0 would be
performed at run-time, but 1.0 / 3.0 would not. For other optimisations, behaviour
is somewhere in-between the two C99 states.

Digraphs

These six tokens:

<: :> <% %> %: %:%:

behave, respectively, the same as the six tokens:

[] { } # ##

This is to enable C source code to be written using restricted character sets where
these characters are unavailable. For example:

%:include <stdio.h>
char a<:2:> = <% 1, 3 %>;

Universal character names

The compiler now accepts C99 universal character names (UCNs) in string and
character literals. UCNs are sequences of the form \uxxxx or \Uxxxxxxxx giving
the hexadecimal code of an ISO/IEC 10646 UCS (Unicode) character. They can be
used in strings or identifiers, as a source and execution character set-independent
way of specifying characters:

char *pound = "\u00A3"; // equivalent to Latin-1 char *pound = "£";
int fran\u00E7ais; // equivalent to Latin-1 int français;

The compiler currently only supports them in string and character literals.
109

C99 restrictions implemented in the compiler
C99 restrictions implemented in the compiler

Implicit int type no longer assumed

Previous versions of C assumed that untyped functions and function arguments
were of integer type, although the compiler generated a warning. In C99 untyped
functions and function arguments are regarded as errors.

Return

Functions declared as void are not allowed to use return with an expression,
whilst non-void functions must use return with an expression.

Other C99 features

Other C99 features implemented in the compiler include:

● Reliable integer division

● Preprocessor arithmetic is done using intmax_t or uintmax_t

● Partial support for new block scopes for selection and iteration statements

● Integer constant type rules

● Integer promotion rules

● Improved arithmetic is IEC 60559 compliant but it does not meet all of the
extra requirements required in the IEC 60559 annex of the C99 standard

● Idempotent type qualifiers (e.g. const const int x is equivalent to
const int x)

● Empty macro arguments

● va_copy macro

● Complex number support using the complex.h header file

● Type-generic math macros (using the tgmath.h header file)

C99 non-compliances

The following C99 features are not implemented in the current version of the
compiler:

● Wide character library support (using the wchar.h and wctype.h header
files). The functions in these header files have not been implemented.

● _Pragma preprocessing operator
110

C implementation details
Implementation notes

_Bool is an 8-bit type; any value other than 0 or 1 is a trap representation.

Unlike char, short or float, _Bool is ‘caller-narrowed’ in function calls.

Variable-length arrays use the new library functions __rt_allocauto and
__rt_freeauto. Their prototypes are:

void *__rt_allocauto(size_t);
void __rt_freeauto(void *);

In the future these could be improved to ensure variable length arrays are freed
correctly in longjmp-type situations, by associating blocks with stack chunk and
stack pointer values.

long long uses a host of new run-time support functions – the functions used
are compatible with the ones used by the Arm ADS compiler. The compiler inlines
many long long operations. If you specify -cpu 4 or similar, it will inline some
multiplications (signed * signed → long long, unsigned * unsigned → long long,
and unsigned * long long → long long) using the UMULL and SMULL instructions
which are available on StrongARM processors or later.

Compatibility issues

There should be very few problems in compiling existing code using the C99
compiler. The most likely problem is existing code may use implicit int
declarations. Another possible problem is that existing code may use keywords
that are now reserved. These are inline, restrict, _Bool, _Complex and
_Imaginary.

If problems are encountered the C99 features may be disabled by selecting ISO
C90 in the cc menu or by specifying -c90 on the cc command line.
111

C18 features
C18 features
The current compiler supports the majority of features from the new ISO C
standard (ISO/IEC 9899:2018) known as C18. This document summarises the C18
features that are implemented – it includes most of the C18 compiler features and
some of the C18 library functions.

These C18 features are unavailable when the C99, C90 or PCC compiler options are
used.

If any of the C18 library functions are used it is essential that the SharedCLibrary
6.05 or later is loaded as described in Ensuring the necessary components are present on
page 348.

This section is not intended to be a tutorial on the C18 language. For more details
refer to a C18 programmer’s guide or the C18 standard – see section The C standards
on page 7.

C18 features implemented in the compiler

Static assertions

The compiler, after the preprocessing stage has completed, will evaluate a constant
expression for truth. If the result is false the assertion fails and the message
printed out as a compilation error. You can use static assertions to check that
assumptions your program makes hold true:

#include <assert.h>
#include "netinet/in.h"

struct sockaddr_in adr;

static_assert(sizeof(adr.sin_addr) == sizeof(uint32_t), "Bad sock size");

They can be used to check all types of compile time generated expressions,
including enums:

#include <assert.h>

typedef enum
{

RED,
GREEN,
BLUE

} colours_t;

static_assert(RED + 2 == BLUE, "Colours not in order");

A static assertion may be placed anywhere where a declaration is permitted.
112

C implementation details
Non returning functions

Functions that are not intended to return can be marked with a noreturn
qualifier.

#include <stdnoreturn.h>

static noreturn void hangloop(int unused)
{

while (1) {}
/* Not reached */
for (int i = 0; i < 1000; i++)

unused++;
}

Functions marked noreturn will be checked for paths that could return, resulting
in a warning if a return is determined to be possible. In addition, any unreachable
code found in such functions will be eliminated.

Complex type initialisation

Complex number variables can now be initialised using the CMPLXF, CMPLX,
CMPLXL macros. For example:

#include <complex.h>

static const float complex slope = CMPLXF(1.234, 5.678);

Floating point limits

C18 introduces some extra limits in addition to those already found in
<float.h>.

FLT_HAS_SUBNORM conveys the implementation's handling of
subnormals.

FLT_DECIMAL_DIGITS declares the digits which can be encoded
losslessly.

FLT_TRUE_MIN declares the absolute minimum value that can
be encoded.

For double variables change the FLT prefix to DBL in each of the above defines, and
for long double variables use the prefix LDBL instead.
113

C18 features implemented in the compiler
Alternate string literal encodings

Three extra quoted string prefixes are available in C18, in addition to the L prefix
used to encode wide strings made up of arrays of wchar_t.

The prefix u8 will encode the quoted string in UTF-8.

char *encoded = u8"This car cost £1000"; /* As a UTF-8 string */

The prefix u makes a string of char16_t, U makes a string of char32_t, which
are typically useful for Unicode UCS-2 and UCS-4 manipulation respectively.

#include <uchar.h>

char16_t string[] = u"Storage for up to 65536 code points per character";
char32_t widest[] = U"Fully 32 bits per character";

Variable alignment

The alignment of a variable type can be queried using the alignof operation.

#include <stdalign.h>

printf("Structure has %u byte alignment\n", alignof(struct bbox));

Because the type being queried can be declared at compile time, after
preprocessing, the alignof operation is particularly useful when used in
conjunction with static_assert (see page 112).

In addition automatic variables variables can be given a type qualifier to cause the
compiler to overalign them. That is, require the variable to have more strict
alignment than they would naturally. The alignas qualifier can be applied either
when the variable is declared, or when a member is placed inside a structure
definition.

#include <stdalign.h>

typedef struct
{

char c;
alignas(2) uint8_t x, y; /* At offsets +2 +4 */

} text;

int foo(void)
{

alignas(4) char a, b;

return (int)&b - (int)&a; /* Will be a multiple of 4 */
}

The alignas specifier may only be applied to automatic variables at present due
to limitations imposed by other parts of the tool chain, for example when
producing an AIF image or relocatable module. The maximum alignment possible
using alignas for an automatic variable is implicitly determined by the current
procedure calling standard, see appendix ARM procedure call standard on page 297 of
the Desktop Tools guide.
114

C implementation details
The new type max_align_t, defined in <stddef.h>, is an object whose
alignment is the greatest fundamental alignment supported by the compiler.

Generic type selectors

To enable type generic function selection, such as maths functions where a choice
of float/double/long double is typically available, the C18 standard has added the
_Generic keyword.

#define mycos(r) _Generic((r), long double: cosl, \
default: cos, \
float: cosf

)(r)

float result = mycos(0.707f); /* Chooses the cosf function */

Notice how a default case can be used in addition to specifically mentioned types.

Anonymous structures and unions

Nested intermediate unions and structures can now be left with no name, creating
them anonymously, and allowing them to be referenced shorthand. This is most
often useful with unions (as in C++) since a structure could just as easily have
been written flattened.

typedef struct
{

int a;
union
{

int b;
float c;

}; /* No name here makes it anonymous */
struct
{

int x, y, z;
}; /* Also possible, an anonymous struct */
struct
{

int d;
} tail;

} mixture;

mixture m;

m.a = 7;
m.c = 1.414f;
m.d = 57; /* Invalid, d's struct has a name, so m.tail.d = 57 */
printf("Float as hex %08X\n", m.b);

This feature can be temporarily enabled in C99 and earlier modes by wrapping the
structure definition in an anon_unions pragma as described on page 122.
115

C18 features implemented in the compiler
Exclusive access mode for fopen

The fopen() function now has an exclusive access mode, 'x'. This only applies to
'w' modes (wx, wbx, w+ wb+, w+b) and the 'x' must be the last letter of the mode
string. Opens the file in exclusive mode, guaranteeing that no other program has
the file open for writing at the same time.

New and updated header files

The new C18 header files are:

The following header files have some new definitions:

See The C library on page 135 or the header files for more details.

Duplicate type definitions

There can be multiple typedef declarations which declare the same type in the
same compilation unit, provided the types declared are equivalent. This can be
used to help reduce header file ordering issues where two header files may need to
have the same definition in.

Pre-defined macros

The following macros are pre-defined to enable conditional compilation
dependent on the compiler version.

The macro __STDC__ is defined as 1 in C90 and later ISO standards. Future
versions may define it as 2 or 3 etc.

The macro __STDC_HOSTED__ is defined as 1 in C99 and later modes.

<stdalign.h> Defines the alignof and alignas keywords as macros.

<stdnoreturn.h> Defines the noreturn keyword as a macro.

<assert.h> Defines the static_assert keyword as a macro.

<complex.h> Adds CMPLXF, CMPLX, CMPLXL macros for float,
double, long double initialisation.

<float.h> Various extra precision limits.

<stdio.h> Removal of gets function.

<stdlib.h> The new aligned_alloc(), quick_exit() and
at_quick_exit() function prototypes.

<time.h> The new timespec_get() and timespec structure
definition, along with the UTC time base TIME_UTC.
116

C implementation details
The macro __STDC_VERSION__ is defined as 201710L in C18 mode, but is
undefined in C90 mode. It is not a mistake that the date encoded is October 2017;
this is when the standard was ratified, but it was not published until the following
year.

The macros __STDC_IEC559__ and __STDC_IEC559_COMPLEX__ are undefined
and __STDC_ISO_10646__ is defined as 200401L, using the rationale given on
page 107.

The macros __STDC_NO_ATOMICS__ and __STDC_NO_THREADS__ are
defined because these two optional extensions, described in Annex B.16 and B.25
of the standard, are not currently supported.

Quick exits

The quick_exit function in <stdlib.h> performs only minimal environment
clean up then causes a normal program termination via the _Exit library
function. None of the functions registered with atexit are called, nor any signal
handlers, and quick_exit does no itself return to the caller.

Use at_quick_exit to register any functions which will be called if
quick_exit is.

Sub-second resolution time

The timespec_get function sets the interval pointed to by ts to hold the current
calendar time based on the specified time base.

#include <time.h>

int timespec_get(struct timespec *ts, int base);

The only base supported by the SharedCLibrary is TIME_UTC which fills the
timespec structure with the system time. Note that on RISC OS the system time is
usually incremented at 100Hz, so fields in the timespec structure will use that
accuracy also.

If the timespec_get function is successful it returns the nonzero value base;
otherwise, it returns zero.

Withdrawal of gets

The gets function has been withdrawn from <stdio.h> in C18 because it was
deemed a serious buffer overrun security risk.
117

C18 non-compliances
C18 non-compliances

The unicode character library support (using the uchar.h header files) functions
have not been implemented.

The normative bounds-checking (annex K) and analysability (annex L) parts of the
standard are not supported.

Compatibility issues

There should be very few problems in compiling existing code using the C18
compiler. If problems are encountered the C18 features may be disabled by
selecting ISO C90 or C99 in the cc menu or by specifying -c90 or -c99 on the cc
command line.

ISO/IEC 9899:2018 clarifies the position of some aspects of the earlier standard
ISO/IEC 9899:2011 but doesn't add or remove language features. There is no C11
mode available.
118

C implementation details
Extra features
This section describes the following machine-specific features of the Acorn C
compiler:

● #warning directive.

● #pragma directives.

● special declaration keywords for functions and variables.

● pre-defined macros.

● inline assembler.

#warning directive

Despite this pre-processor directive not being a formal part of any ISO C standard,
it has wide support across other compilers in practice. The usage is similar to
#error, for example:

#warning This is a warning

will result in cc emitting the line:

"myfile.c", line x: Warning: #warning encountered "This is
a warning"

Because this is a non-standard extension, it is not permitted if you specify -fussy
or -strict.

#pragma directives

Pragmas recognised by the compiler come in two forms:

#pragma -letter«digit»

and

#pragma «no_»feature-name

A short-form pragma given without a digit resets that pragma to its default state;
otherwise to the state specified.

For example:

#pragma -s1
#pragma no_check_stack

#pragma -p2
#pragma profile_statements
119

#pragma directives
The set of pragmas recognised by the compiler, together with their default settings,
varies from release to release of the compiler. The current list of recognised
pragmas is:

In each case, the default setting is starred (except utf8_source, where the
default depends on the current system alphabet).

You can also globally set pragmas by options set in the command line passed to
the cc program (see the section Command lines on page 44); the preferred option to
use is shown above. Where no option is shown for a pragma, it is because that
pragma may only sensibly be used locally, and should be enabled/disabled around
the particular program statements it is to affect.

Pragma name Short
form

Short ‘No’
form

Command
line option

warn_implicit_fn_decls a1 * a0 -Wf

check_memory_accesses c1 c0 * -zpc0|1

warn_deprecated d1 * d0 -Wd

continue_after_hash_error e1 e0 *

(FP register variable) f1-f4 f0 *

disable_fpargs_in_regs g1 g0 *

force_fpargs_in_regs g2 g0 *

include_only_once i1 i0 *

optimise_crossjump j1 * j0 -zpj0|1

optimise_schedule l1 * l0 -zpl0|1

optimise_multiple_loads m1 * m0 -zpm0|1

anon_unions o1 o0 * -zpo0|1

profile p1 p0 * -p

profile_statements p2 p0 * -px

(integer register variable) r1-r7 r0 *

check_stack s0 * s1 -zps0|1

force_top_level t1 t0 *

utf8_source u1 u0 -zpu0|1

check_printf_formats v1 v0 *

check_scanf_formats v2 v0 *

(internal use only) v3 v0 *

check_swix_formats v4 v0 *

side_effects y0 * y1

optimise_cse z1 * z0 -zpz0|1
120

C implementation details
Pragmas controlling the source character set

The pragma utf8_source determines the source character set. The compiler’s
default source character set is Latin-1, unless the current system alphabet is UTF8.

In Latin-1 mode some interpretation is placed on top-bit set characters; UCNs
\u0000 to \u00FF are translated to characters \x00-\xFF, others are translated to '?',
with a warning. String literals are normally passed through without interpretation,
to enable the production of code with character sets unknown to the compiler.

In UTF-8 mode, the source and execution multi-byte encoding is UTF-8. Wide
character strings and constants are converted from the UTF-8 in the source to
UCS-4. UCNs in multi-byte strings and character constants are converted to UTF-8
sequences. UTF-8 sequences are not normally interpreted by the compiler, except
when it needs to convert to UCS-4.

Pragmas controlling the preprocessor

The pragma continue_after_hash_error in effect implements a #warning
preprocessor directive. Pragma include_only_once asserts that the containing
#include file is to be included only once, and that if its name recurs in a
subsequent #include directive then the directive is to be ignored.

The pragma force_top_level asserts that the containing #include file
should only be included at the top level of a file. A syntax error will result if the file
is included, say, within the body of a function.

Pragmas controlling printf/scanf/_swi/_swix argument checking

The pragmas check_printf_formats is used to make the compiler check that
the actual arguments to printf, sprintf, fprintf etc. are type-checked
against the format designators in a literal format string. The compiler assumes that
the second to last argument in the declaration is the format string and that the
variable parameters follow.

The pragma check_scanf_formats is used to make the compiler check the
actual arguments to scanf and sscanf are type-checked against the format
designators in a literal format string. The compiler assumes that the second to last
argument in the declaration is the format string and that the variable parameters
follow.

The pragma check_swix_formats is used to make the compiler check that the
actual number of arguments to _swi and _swix matches the number of
arguments specified.
121

#pragma directives
These pragmas affect all function declarations, including function prototypes,
which occur while the pragma is active, regardless of the function name. They are
enabled in the relevant libraries before the relevant function prototypes and
disabled immediately afterwards to ensure that the parameters to the specified
functions are all checked wherever possible.

Programmers may use these pragmas in their own code to make the compiler
check the parameters passed to their own variable argument functions where the
same parameter format is used.

For example:

#pragma check_printf_formats
int debug(char * /* format */, ...);
int debug_colour(int /* colour */, char *, ...);
#pragma no_check_printf_formats

Of course, calls using non-literal format strings cannot be checked.

Pragmas controlling anonymous structures and unions

The pragma anon_unions allows the use of the feature introduced with C18 to
omit the name of unions, where no ambiguity exists, as a shorthand when
accessing its members. The pragma name is chosen for compatibility with other
compilers, and in fact allows both anonymous structures and unions when the
compiler is being run in C99 (or earlier) language mode.

Pragmas controlling optimisation

The pragmas optimise_crossjump, optimise_cse,
optimise_multiple_loads, optimise_schedule, and side_effects
give fine control over where these optimisations are applied.

Cross jumping and common sub-expression elimination

For example, it is sometimes advantageous to disable cross-jumping (the common
tail optimisation) in the critical loop of an interpreter; and it may be helpful in a
timing loop to disable common sub-expression elimination. Note that the correct
use of the volatile qualifier should remove most of the more obvious needs for
this degree of control (and volatile is also available in the Acorn C compiler’s
-pcc mode unless -strict is specified).

Multiple loads

The compiler will try to combine a run of LDR instructions from sequential memory
locations into a single LDM instruction when optimise_multiple_loads is
enabled. There are some processor architectures where LDM will tie up the
122

C implementation details
memory bus atomically until the load multiple completes, which can affect
interrupt and DMA performance, where it may be better to disable the
optimisation to give other bus users opportunity to access memory.

Scheduling

The scheduler re-orders instructions to tune performance for the chosen CPU
based on a simple model of which opcodes can be run in parallel, which take the
longest to complete, and which cause interlocks to occur. Generally, some
scheduling is preferable to none for all CPUs after ARM7, even if the model isn’t
perfect.

The -cpu switch selects which scheduling model is adopted. If that would cause
unsupported instructions to be output for the target architecture use the -arch
switch to select a backwards compatible architecture while still following the
selected scheduling model.

Impure functions

By default, functions are assumed to be impure, so function invocations are not
candidates for common sub-expression elimination. Pragma noside_effects
asserts that the following function declarations (until the next #pragma
side_effects) describe pure functions, invocations of which can be common
sub-expressions. See also the section __pure on page 125.

Pragmas controlling code generation

Stack limit checking

The pragma nocheck_stack disables the generation of code at function entry
which checks for stack limit violation. In reality there is little advantage to turning
off this check: it typically costs only two instructions and two machine cycles per
function call. The one circumstance in which nocheck_stack must be used is in
writing a signal handler for the SIGSTAK event. When this occurs, stack overflow
has already been detected, so checking for it again in the handler would result in a
fatal circular recursion.

Memory access checking

The pragma check_memory_accesses instructs the compiler to precede each
access to memory by a call to the appropriate one of:

__rt_rdnchk where n is 1, 2, or 4, for byte, short, or long reads (respectively)
__rt_wrnchk where n is 1, 2, or 4, for byte, short, or long writes (respectively).
123

#pragma directives
Global (program-wide) register variables

The pragmas f0-f4 and r0-r7 have no long form counterparts. Each introduces or
terminates a list of extern, file-scope variable declarations. Each such
declaration declares a name for the same register variable. For example:

#pragma r1 /* 1st global register */
extern int *sp;
#pragma r2 /* 2nd global register */
extern int *fp, *ap; /* Synonyms */
#pragma r0 /* End of global declaration */
#pragma f1 /* 1st global FP register */
extern double pi;
#pragma f0 /* End of global declaration */

Any type that can be allocated to a register (see the section Hints (J.3.8) on page 91)
can be allocated to a global register. Similarly, any floating point type can be
allocated to a floating point register variable.

Global register r1 is the same as register v1 in the Arm Procedure Call Standard
(APCS); similarly, r2 equates to v2, and so on. Depending on the APCS variant,
between five and seven integer registers (v1-v7, machine registers R4-R10) and four
floating point registers (F4-F7) are available as register variables. (There are six
integer registers available in the default APCS variant, as used by RISC OS.) In
practice it is probably unwise to use more than three global integer register
variables and 2 global floating point register variables.

Provided the same declarations are made in each compilation unit, a global
register variable may exist program-wide.

Otherwise, because a global register variable maps to a callee-saved register, its
value will be saved and restored across a call to a function in a compilation unit
which does not use it as a global register variable, such as a library function.

A corollary of the safety of direct calls out of a global-register-using compilation
unit, is that calls back into it are dangerous. In particular, a global-register-using
function called from a compilation unit which uses that register as a compiler
allocated register, will probably read the wrong values from its supposed global
register variables.

Currently, there is no link-time check that direct calls are sensible. And even if
there were, indirect calls via function arguments pose a hazard which is harder to
detect. This facility must be used with care. Preferably, the declaration of global
register variable should be made in each compilation unit of the program. See also
the section __global_reg(n) on page 125.
124

C implementation details
Special function declaration keywords

Several special function declaration options are available to tell the Acorn
C compiler to treat that function in a special way. None of these are portable to
other machines.

__value_in_regs

This allows the compiler to return a structure in registers rather than returning a
pointer to the structure. For example:

typedef struct int64_structt
{

unsigned int lo;
unsigned int hi;

} int 64;

__value_in_regs extern int64 mul64(unsigned a, unsigned b);

See the appendix ARM procedure call standard on page 297 of the Desktop Tools guide
for details of the default way in which structures are passed and returned.

__pure

By default, functions are assumed to be impure (i.e. they have side effects), so
function invocations are not candidates for common sub-expression elimination.
__pure has the same effect as pragma noside_effects, and asserts that the
function declared is a pure function, invocations of which can be common
subexpressions.

Special variable declaration keywords

__global_reg(n)

Allocates the declared variable to a global integer register variable, in the same
way as #pragma rn. The variable must have an integral or pointer type. See also
the section Global (program-wide) register variables on page 124.

__global_freg(n)

Allocates the declared variable to a global floating point register variable, in the
same way as #pragma fn. The variable must have type float or double. See also
the section Global (program-wide) register variables on page 124.

Note that the global register, whether specified by keyword or pragmas, must be
declared in all declarations of the same variable. Thus:
125

Pre-defined macros
int x;
__global_reg(1) x;

is an error.

Pre-defined macros

The following macros are pre-defined in this compiler.

__CC_NORCROFT

This is defined as 1 in this compiler which is based on the original Norcroft cc
compiler. This macro may be used for conditional compilation where the source
code is likely to be compiled using other compilers.

__CC_NORCROFT_VERSION

This symbol is defined as the compiler version number * 100 in all versions of cc
from 5.11 onwards. For example, in cc v5.49 __CC_NORCROFT_VERSION has the
value 549. See also the command line option -ccversion version on page 49.

__riscos

This is defined as 1 when the compiler is targetting RISC OS. This macro may be
used for conditional compilation where the source code needs to use concepts
that are unique to RISC OS, for example, polling the Window Manager.

__arm

This is defined as 1 when the compiler is targetting the Arm architecture. This is
always the case for RISC OS.

Put together, these 4 pre-defined macros reflect the information given in the
banner shown when the compiler starts:

Norcroft RISC OS Arm C vsn 5.49

The remaining macros relate to selections you make at the command line.

__APCS_32

This symbol is pre-defined when the APCS-32 variant of the Arm Procedure Calling
Standard is in use. This is the default, but may be disabled by specifying the cc
command line option -apcs /26bit.
126

C implementation details
__APCS_FPREGARGS

This symbol is pre-defined when the Floating Point register option of the Arm
Procedure Calling Standard is in use. This is not normally used in RISC OS but may
be enabled with the cc command line option -apcs /fpregargs.

__APCS_INTERWORK

This symbol is pre-defined when the Thumb interworking variant of the Arm
Procedure Calling Standard is in use. This is not normally used in RISC OS but may
be enabled with the cc command line option -apcs /interwork is used.

__APCS_NOFP

This symbol is pre-defined when the no frame pointer variant of the Arm Procedure
Calling Standard is in use. This is not normally used in RISC OS but may be
enabled with the cc command line option -apcs /nofp.

__APCS_NOSWST

This symbol is pre-defined when the no software stack checking variant of the Arm
Procedure Calling Standard is in use. This is not normally used in RISC OS but may
be enabled with the cc command line option -apcs /noswst is used.

__APCS_REENT

This symbol is pre-defined when the re-entrant variant of the Arm Procedure
Calling Standard is in use. This applies when the cc command line option -apcs
/reentrant is used.

Intrinsic functions

Intrinsic functions are a family of Arm architecture specific low level extensions to
the C language. They are always available and do not require a header file to be
included, but necessarily make the source code non-portable across other
systems. The functions available are described below.

void __breakpoint(int arg);

Creates a hardware BKPT instruction at the point the intrinsic is used with arg
encoded into it. It is an error to use anything other than a constant integer for arg.
Note that BKPT will cause an undefined instruction prior to ARMv5, and a prefetch
abort if there is no debugger attached.

unsigned int __current_pc(void);
127

Large file support
Returns the value of the program counter at the point the intrinsic is used.

unsigned int __current_sp(void);

Returns the value of the stack pointer at the point the intrinsic is used.

void __nop(void);

Emits a single no operation instruction, and flushes the compiler’s scheduler. The
instruction will not be optimised away (unless it is unreachable). Note that the
exact instruction used for a no operation may vary based on the selected
architecture.

unsigned int __return_address(void);

Returns the value of the link register that would be used to return from the current
function. Note that inlining and tail call optimisation may mean that the return
address is actually that of the outer function.

void __schedule_barrier(void);

This intrinsic flushes the compiler’s scheduler without any instructions being
output. Compare this with the no operation intrinsic.

int __semihost(int reason, const void *arg);

Calls the semihosting SWI 0x123456 with reason and supplementary arg data.
Semihosting is used for debugging between a target and monitoring system. For
RISC OS this intrinsic should not be used as all SWI numbers must be allocated,
and none is reserved for semihosting purposes.

Large file support

The shared C library includes extensions for large file support compatible with
those defined in POSIX.1-2008 (often referred to as LFS extensions).

Most of the ISO standard C library function definitions are file size agnostic, using
abstract data types. The exceptions to this are the functions fseek and ftell,
which are specified in the C standard to use long int types, which are defined to
be signed 32-bit numbers on RISC OS, as on most other 32-bit systems. These
cannot be changed without breaking ISO conformance.

In order to support files larger than 232 bytes long it is necessary to define versions
of fseek and ftell which can use 64-bit offsets. These are named fseeko and
ftello, and they use an extra abstract type, off_t, as the relative file pointer
type.
128

C implementation details
These extensions are not enabled by default; they are controlled by the definition
of the macros _LARGEFILE_SOURCE , _LARGEFILE64_SOURCE and
_FILE_OFFSET_BITS. These macros may be defined either with a -D switch on
the command line, or by using #define in your source file before you #include
<stdio.h>.

Defining _LARGEFILE_SOURCE makes fseeko, ftello and off_t available.
The size of off_t depends on the value of _FILE_OFFSET_BITS. This may be
set to either 32 or 64, and this controls whether off_t is defined as a 32-bit or
64-bit type. If _FILE_OFFSET_BITS is not defined, off_t will default to being a
32-bit type.

Defining _LARGEFILE64_SOURCE does everything that _LARGEFILE_SOURCE
does but in addition it defines the types fpos64_t and off64_t, and the
functions fgetpos64, fopen64, freopen64, fseeko64, fsetpos64,
ftello64 and tmpfile64.

The way that these macros are defined means that to enable 64-bit file pointers in
your software you have two options.

1 Selectable off_t. This will leave your source code largely untouched, except
for using fseeko and ftello instead of fseek and ftell. Your program
can be compiled so support either 32-bit or 64-bit file pointers by defining
_FILE_OFFSET_BITS as required, but note that you have the responsibility
to ensure that all the object files and static libraries linked in your program
have been compiled using the same settings, or the results will be
unpredictable.

2 Explicit off_t. This involves defining _LARGEFILE64_SOURCE and
changing your source code to use the types fpos64_t and off64_t, and the
functions fgetpos64, fopen64, freopen64, fseeko64, fsetpos64,
ftello64 and tmpfile64. Any file descriptor opened using the traditional
fopen, freopen or tmpfile functions will be limited to 2GB-1 in size and
any attempt to read, write or seek outside this range will result in failure, and
errno will be set to EOVERFLOW or EFBIG.

Whichever option you choose, you will need to RMEnsure SharedCLibrary 5.64 in
order to run the resulting binary.

Inline assembler

The inline assembler is a powerful new feature allowing the programmer to easily
access the full functionality of the Arm AArch32 instruction set within the C
environment. Inline assembler is invoked by an __asm statement:
129

Inline assembler
__asm
{

...
}

Assembler instructions are separated by newlines or semicolons. Within the
assembler block, C comments and macros work as normal.

The assembler is not a “raw” assembler. The instructions within the __asm block
are merged into the platform-independent pseudo-instructions generated by the
surrounding C code, and are then subject to all the following compiler
optimisations (e.g. common sub-expression elimination, dead code analysis,
register allocation and peepholing) before being converted back into Arm code.
The resulting object code is not guaranteed to be identical to the source assembly
– think of it as an optimising assembler.

Within the assembler, physical Arm register names can be used, but these are not
automatically bound to any C variables - it is not valid to, say, access R0 in an
attempt to inspect the first argument of your function. Instead, C expressions can
be used in the place of registers. Physical registers only have scope within the
assembler, and their use will constrain the compiler's register allocation – avoid
where possible.

For example:
130

C implementation details
char *my_strcpy(char *dst, const char *src)
{

char *orig_src;
int c;
__asm
{

MOV orig_src, src
loop:

LDRB c, [src], #1
STRB c, [dst], #1
TEQ c, #0
BNE loop

}
return orig_src;

}

// returns old I bit
inline int disable_interrupts(void)
{

int old_i, temp;
__asm
{

MRS temp, CPSR
AND old_i, temp, #0x80
ORR temp, temp, #0x80
MSR CPSR_c, temp

}
return old_i;

}

Note the powerful conjunction of inline and __asm in the last example. Also,
because of the optimiser, if you do not use the return value of the function when it
is inlined, the unneeded AND instruction will be eliminated by the compiler.

If you do use physical registers, you must explicitly transfer them to and from C
variables:
131

Inline assembler
size_t my_strlen(const char *s)
{

size_t len;
__asm
{

// the following instruction must be here to logically
// transfer s into physical register a1. In the final
// output, no MOV will actually be generated as s is
// already in a1.
MOV a1, s

MOV a2, #0
loop:

LDRB a3, [a1],#1
TEQ a3, #0
ADDNE a2, a2, #1
BNE loop

// a2 must be transferred into a C variable so we can
// return it.
MOV len, a2

}
return len;

}

Because (virtually) arbitrary expressions can be used, inline assembly can be
considerably more expressive than normal assembly. For example:

SWP test,0,[&semaphore]

MOV a[x][y][z], #0

MUL x,x,#31

MOV y,1000000/x

MOV R0,"Hello"

The full Arm AArch32 instruction set is supported, with the following notes and
exceptions:

● B operates like a C goto - the target is a label. Labels can be placed in
assembly the same as in C.

● BL and SWI must specify the physical registers they use. This is done by
specifying input, output and corrupted register lists as part of the instruction:

MOV R0, #0x124
MOV R1, sprite_area
MOV R2, sprite_name
SWI OS_SpriteOp, {R0-R2}, {R2}, {LR,PSR}
MOV sprite_address, R2
132

C implementation details
For best practice, BL and SWI are the only reason you should use physical
registers. Any or all of the lists can be omitted. If they are omitted, BL and SWI
calls are assumed to have no input or output registers, and corrupt R0-R3 and
R12, plus LR for BL.

Note that the inability to manipulate the stack rules out the ability to call
APCS functions with more than 4 words of arguments using BL. To call a
normal C function, it is usually better to switch back to C than to use BL.
Alternatively, use an expression:

ADD len, strlen(fred), #1

This removes any dependencies on the calling standard.

● No other instructions that change the program counter can be used. BX is not
supported.

● The stack cannot be used. Use C variables for storage, and if you do use
physical registers, the compiler will preserve them around your code if
necessary.

● FPA instructions (and hence registers) are not supported.

● Because the inline assembler does not support the FPA, BL and SWI calls must
not corrupt FPA registers.
133

Inline assembler
134

6 The C library

he shared C library is a RISC OS relocatable module which can be used and

shared by any applications which are resident in memory. It provides all the

standard facilities of the language, as defined by the ISO standard document. Code
using calls to the shared C library will be portable to other environments if an ISO
compiler and library are available for that environment.

C and C++ programs are linked with a small piece of code and data called Stubs,
which itself interfaces with the shared C library. The stubs contain your program’s
copy of the library’s data, and an entry vector which allows your program to locate
library routines in the C library module. Stubs is found in the directory
AcornC/C++.Export.APCS-32.Lib.CLib.o.

Use of the shared C library:

● economises on RAM space when multiple C applications are running

● saves space on disc, benefiting users with single floppy disc drives

● makes programs load faster

● costs practically nothing at run time.

(For example, the Dhrystone benchmark runs just as quickly using the shared C
library as when linked stand-alone with ANSILib.)

Without the shared C library, it would not be possible to pack so much into
Acorn C/C++.

Compatibility Issues

Although the shared C library is normally located in the RISC OS ROM it will be
necessary to load a new version if the ROM version is out of date. In particular, the
shared C library in RISC OS 4.29 and earlier versions does not support 32-bit code
or any of the new features described in C99 features on page 97.

See the section Ensuring the necessary components are present on page 348 for details on
testing and loading the necessary software modules.

T

135

assert.h
assert.h

The assert macro puts diagnostics into programs. When it is executed, if its
argument expression is false, it writes information about the call that failed
(including the text of the argument, the name of the function, the name of the
source file, and the source line number, the last three of these being, respectively,
the values of the pre-defined string __func__ and the preprocessing macros
__FILE__ and __LINE__) on the standard error stream. It then calls the abort
function. If its argument expression is true, the assert macro returns no value.

In C18 language mode, assertions can be added that are evaluated at compile time
rather than when the program is executed. The static_assert macro checks
that the argument expression is true and abandons compilation if not, printing the
second argument for diagnosis.

If NDEBUG is #defined prior to inclusion of assert.h, calls to assert expand to
null statements. This provides a simple way to turn off the generation of
diagnostics selectively.

Note that assert.h may be included more than once in a program with different
settings of NDEBUG.
136

The C library
complex.h

The complex number library provides versions of the trigonometric functions
found in math.h which instead take complex number arguments.

The C99 language features complex numbers which define a number space with
both real and imaginary planes. The real number component is simply a floating
point type as in earlier versions of the C language and the imaginary number
component is defined in this header file.

The macro imaginary expands to the compiler’s native type specifier
_Imaginary, and the macro complex expands to the type specifier _Complex.
The macros _Imaginary_I and _Complex_I are constant expressions of the
imaginary and complex unit definitions, respectively.

Complex variables may be initialised using the CMPLXF, CMPLX, CMPLXL macros
for float, double, and long double precisions respectively.

For the full list of complex maths functions consult the complex.h header file
directly, or consider using the type generic maths functions described in tgmath.h
on page 200.
137

ctype.h
ctype.h

ctype.h declares several functions useful for testing and mapping characters. In
all cases the argument is an int, the value of which is representable as an unsigned
char or equal to the value of the macro EOF. If the argument has any other value,
the behaviour is undefined.

int isalnum(int c) Returns true if c is alphabetic or numeric

int isalpha(int c) Returns true if c is alphabetic

int isblank(int c) Returns true if c is a blank character used to
separate words in the current locale

int iscntrl(int c) Returns true if c is a control character (in the ASCII
locale)

int isdigit(int c) Returns true if c is a decimal digit

int isgraph(int c) Returns true if c is any printable character other
than space

int islower(int c) Returns true if c is a lower-case letter

int isprint(int c) Returns true if c is a printable character (in the
ASCII locale this means 0x20 (space) → 0x7E (tilde)
inclusive).

int ispunct(int c) Returns true if c is a printable character other than a
space or alphanumeric character

int isspace(int c) Returns true if c is a white space character viz:
space, newline, return, linefeed, tab or vertical tab

int isupper(int c) Returns true if c is an upper-case letter

int isxdigit(int c) Returns true if c is a hexadecimal digit, ie in 0…9,
a…f, or A…F

int tolower(int c) Forces c to lower case if it is an upper-case letter,
otherwise returns the original value

int toupper(int c) Forces c to upper case if it is a lower-case letter,
otherwise returns the original value
138

The C library
errno.h

This file contains the definition of the macro errno, which is of type volatile
int. It contains six macro constants defining the error conditions listed below.

EDOM

If a domain error occurs (an input argument is outside the domain over which the
mathematical function is defined) the integer expression errno acquires the
value of the macro EDOM and HUGE_VAL is returned. EDOM may be used by
non-mathematical functions.

ERANGE

A range error occurs if the result of a function cannot be represented as a double
value. If the result overflows (the magnitude of the result is so large that it cannot
be represented in an object of the specified type), the function returns the value of
the macro HUGE_VAL, with the same sign as the correct value of the function; the
integer expression errno acquires the value of the macro ERANGE. If the result
underflows (the magnitude of the result is so small that it cannot be represented in
an object of the specified type), the function returns zero; the integer expression
errno acquires the value of the macro ERANGE. ERANGE may be used by
non-mathematical functions.

ESIGNUM

If an unrecognised signal is caught by the default signal handler, errno is set to
ESIGNUM.

EILSEQ

A multibyte character encoding error, as a result of an illegal sequence, results in
errno being set to EILSEQ.

EOVERFLOW

The value of errno is set to EOVERFLOW when an operation is performed where
one or more fields of a data structure are not large enough to hold the values
required. For example, attempting to use fopen on a file whose size is larger than
that which can be held in an object of type off_t.
139

errno.h
EFBIG

When data is lost due the file exceeding the file size limit for the called function the
value of errno is set to EFBIG.
140

The C library
fenv.h

The header fenv.h declares two types and several macros and functions to
provide access to the floating-point environment. The environment includes any
flags and status to describe the underlying implementation, and allows C
programmers to query this environment and save/restore it as necessary.

The type fenv_t represents the entire floating-point environment. Variables of
this type can be initialised to the default environment by assignment to
FE_DFL_ENV.

The type fexcept_t represents the floating-point status collectively, including
any status the implementation associates with the flags.

The exception flags can be one of the following:

FE_DIVBYZERO divide by zero
FE_INEXACT inexact result
FE_INVALID invalid result
FE_OVERFLOW overflow
FE_UNDERFLOW underflow

The macro FE_ALL_EXCEPT is a mask of all exceptions defined by the current
implementation. These exception defines are used in conjunction with
feclearexcept, feraiseexcept, and fesetexceptflag to change the
current floating point exception status, and are also the values returned by
fegetexceptflag. To determine if individual exceptions are pending
fetestexcept can be called which returns the current state of those exceptions
passed to it, equivalent to a bitwise AND operation.

The rounding behaviour per IEC 60559 can be one of the following:

FE_DOWNWARD round down
FE_UPWARD round up
FE_TONEAREST round to nearest integer
FE_TOWARDZERO round towards zero

These rounding defines are passed to fesetround and returned by
fegetround to determine the rounding policy of the floating point environment.

The environment as a whole can be read, set, restored, and put on hold using the
supporting functions fegetenv, fesetenv, feupdateenv, feholdexcept.
141

float.h
float.h

This file contains a set of macro constants which define the limits of computation
on floating point numbers. These are discussed in the chapter C implementation
details on page 77.
142

The C library
inttypes.h

The inttypes.h library header file is part of the C99 language extensions and
defines a group of fprintf and fscanf style format specifiers for each of the
integer types defined in its partner header file stdint.h, which it includes itself.

Each group of macros follows the pattern function fmt-specifier type-options bits where
function is either PRI for the fprintf family or SCN for the fscanf family and
type-options may be omitted or one of LEAST, FAST, MAX or PTR. The value of bits can
be either 8, 16, 32, or 64.

These macros are needed to make fprintf and fscanf format strings portable
across systems that use different widths for their integer types. Consider the
following example:

int32_t apple_count = 70000;
printf(“There are %d apples\n”, apple_count);

The %d specifier prints the value of an int type, so this code would work on systems
like RISC OS where int is 32-bits wide, but would fail when compiled for a
processor that used 16-bit integer types. Using the inttypes.h macros allows
this to be portable across any C99 compliant compiler by changing the printf
statement to:

printf(“There are ” PRId32 “apples\n”, apple_count);

For fprintf signed types there are:

PRIdn PRIdLEASTn PRIdFASTn PRIdMAX PRIdPTR
PRIin PRIiLEASTn PRIiFASTn PRIiMAX PRIiPTR

For fprintf unsigned types there are:

PRIon PRIoLEASTn PRIoFASTn PRIoMAX PRIoPTR
PRIun PRIuLEASTn PRIuFASTn PRIuMAX PRIuPTR
PRIxn PRIxLEASTn PRIxFASTn PRIxMAX PRIxPTR
PRIXn PRIXLEASTn PRIXFASTn PRIXMAX PRIXPTR

For fscanf signed types there are:

SCNdn SCNdLEASTn SCNdFASTn SCNdMAX SCNdPTR
SCNin SCNiLEASTn SCNiFASTn SCNiMAX SCNiPTR

For fscanf unsigned types there are:

SCNon SCNoLEASTn SCNoFASTn SCNoMAX SCNoPTR
SCNun SCNuLEASTn SCNuFASTn SCNuMAX SCNuPTR
SCNxn SCNxLEASTn SCNxFASTn SCNxMAX SCNxPTR
143

iso646.h
iso646.h

Eleven macros are defined by this header file which provide alternate spellings of
some of the integer operators.

Alternate spelling Equivalent to

and &&
and_eq &=
bitand &
bitor |
compl ~
not !
not_eq !=
or ||
or_eq |=
xor ^
xor_eq ^=

For example it is equivalent to write:

if (x != y) printf(“x and y differ”);

and

#include <iso646.h>
if (x not_eq y) printf(“x and y differ”);
144

The C library
limits.h

This set of macro constants determines the upper and lower value limits for
integral objects of various types, as follows:

Object type Object size

Byte (number of bits) 8
Multibyte character (number of bytes) 1

Object type Range of values that can be contained
Signed char -128 to 127
Unsigned char 0 to 255
Char 0 to 255
Short int -0x8000 to 0x7fff
Unsigned short int 0 to 65535
Int (~0x7fffffff) to 0x7fffffff
Unsigned int 0 to 0xffffffff
Long int (~0x7fffffff) to 0x7fffffff
Unsigned long int 0 to 0xffffffff
Long long int (~0x7fffffffffffffff) to

0x7fffffffffffffff
Unsigned long long int 0 to 0xffffffffffffffff

Note that the long long types are only implemented when C99 language features
are enabled in the compiler, they are absent in C90 mode. See also the chapter C
implementation details on page 77.
145

locale.h
locale.h

This file handles national characteristics, such as the different orderings
month-day-year (USA) and day-month-year (UK).

char *setlocale(int category, const char *locale)

Selects the appropriate part of the program’s locale as specified by the category
and locale arguments. The setlocale function may be used to change or
query the program’s entire current locale or portions thereof. Locale information is
divided into the following types:

LC_COLLATE string collation
LC_CTYPE character type
LC_MONETARY monetary formatting
LC_NUMERIC numeric string formatting
LC_TIME time formatting
LC_ALL entire locale

The locale string specifies which locale set of information is to be used. For
example,

setlocale

setlocale(LC_MONETARY,"uk")

would insert monetary information into the lconv structure. To query the current
locale information, set the locale string to null and read the string returned.

lconv

struct lconv *localeconv(void)

Sets the components of an object with type struct lconv with values appropriate
for the formatting of numeric quantities (monetary and otherwise) according to the
rules of the current locale. The members of the structure with type char * are
strings, any of which (except decimal_point) can point to "", to indicate that
the value is not available in the current locale or is of zero length. The members
with type char are non-negative numbers, any of which can be CHAR_MAX to
indicate that the value is not available in the current locale. The members included
are described above.
146

The C library
localeconv returns a pointer to the filled in object. The structure pointed to by
the return value will not be modified by the program, but may be overwritten by a
subsequent call to the localeconv function. In addition, calls to the
setlocale function with categories LC_ALL, LC_MONETARY, or LC_NUMERIC
may overwrite the contents of the structure.
147

math.h
math.h

This file contains the prototypes for commonly required mathematical functions,
as well as a number of classification functions.

Function Returns

double acos(double x) arc cosine of x. A domain error occurs
for arguments not in the range –1 to 1

double asin(double x) arc sine of x. A domain error occurs for
arguments not in the range –1 to 1

double atan(double x) arc tangent of x

double atan2(double x, double y) arc tangent of y/x

double cos(double x) cosine of x (measured in radians)

double sin(double x) sine of x (measured in radians)

double tan(double x) tangent of x (measured in radians)

double acosh(double x) hyperbolic arc cosine of x. A domain
error occurs for arguments not in the
range –1 to 1

double asinh(double x) hyperbolic arc sine of x. A domain
error occurs for arguments not in the
range –1 to 1

double atanh(double x) hyperbolic arc tangent of x

double cosh(double x) hyperbolic cosine of x

double sinh(double x) hyperbolic sine of x

double tanh(double x) hyperbolic tangent of x

double exp(double x) base e exponential function of x (ex)

double exp2(double x) base 2 exponential function of x (2x)

double expm1(double x) base e exponential function of x,

minus 1 (ex-1)

double frexp(double x, int *exp) the value x, such that x is a
double with magnitude in the interval
0.5 to 1.0 or zero, and value equals x
times 2 raised to the power *exp

double ldexp(double x, int exp) x times 2 raised to the power of exp

double log(double x) natural logarithm of x

double log10(double x) log to the base 10 of x

double log1p(double x) natural logarithm of x+1

double log2(double x) log to the base 2 of x
148

The C library
double logb(double x) exponent of x in the floating point
radix

double modf(double x, double *iptr) signed fractional part of x.
Stores integer part of x in object
pointed to by iptr.

double scalbn(double x, int n) efficient x raised to the power of n

double scalbln(double x, long int n)
efficient x raised to the power of n

double cbrt(double x) cube root of x

double fabs(double x) absolute value of x

double hypot(double x, double y) hypotenuse of x and y

double pow(double x, double y) x raised to the power of y

double sqrt(double x) positive square root of x

double erf(double x) error function of x

double erfc(double x) complementary error function of x

double lgamma(double x) natural logarithm of the absolute
value of the gamma of x

double tgamma(double x) gamma of x

double ceil(double x) smallest integer not less than x (ie
rounding up)

double floor(double x) largest integer not greater than x (ie
rounding down)

double nearbyint(double x) the nearest integer to x

double rint(double x) exception raising form of nearbyint

double round(double x) round x away from zero

double trunc(double x) round x to nearest smaller integer

double fmod(double x, double y) floating-point remainder of x/y

double remainder(double x, double y)remainder of x/y for IEC 60559

double copysign(double x, double y) magnitude of x with the sign of y

double nan(const char * tagp) as for strtod(tagp, NULL)

double nextafter(double x, double y)next value after x in direction y

double nexttoward(double x, long double y)
next value after x in direction y

double fmax(double x, double y) larger of x and y

double fmin(double x, double y) smaller of x and y

double fma(double x, double y, double z)value of x*y+z
149

math.h
The C99 language extensions implement long double and float versions of each of
these mathematics functions, using the pattern type function[suffix](type, type...)
where type determines the suffix at compile time: an ‘l’ for the long double variant;
omitted for the conventional double; and an ‘f’ for the float variant. For example:

double fmax(double x, double y)

is listed, therefore it can be inferred that

long double fmaxl(long double x, long double y) and
float fmaxf(float x, float y)

are also defined. The type generic maths facilities provided by tgmath.h
described on page 200 can be used to automatically select the appropriately
named function based on the types of the variables used, reducing the chances of
programming errors.

The macro FP_FAST_FMA indicates whether using the fma function will be faster
than writing out the multiply and add longhand. FP_FAST_FMAL and
FP_FAST_FMAF describe the long double and float variants similarly.

The C99 language extensions include 19 extra utility functions:

● The function fpclassify permits classification of floating point values held
in real floating point variables, returning one of the classifications
FP_INFINITE, FP_NAN, FP_NORMAL, FP_SUBNORMAL, FP_ZERO.

● Maths analogues to the ctype.h query functions called isinfinite,
isinf, isnan, and isnormal.

● Comparison functions called isgreater, isgreaterequal, isless,
islessequal, islessgreater and isunordered which perform the
equivalent relational operator but without raising floating point exceptions in
the case that their arguments are unordered.

● A means to query the sign of a floating point value with signbit.

● Rounding functions which return integral results unlike their similarly named
floating point returning functions: rint has counterpart lrint and llrint;
round has counterpart lround and llround.

● Natural logarithm functions which return integral results unlike their similarly
named floating point returning functions: logb has counterpart ilogb,
ilogbf and ilogbl. The special values FP_ILOGB0 and FP_ILOGBNAN are
returned when the exponent is zero or not a number respectively, because
these values cannot otherwise be distinctly represented in the more limited
integer number space.
150

The C library
setjmp.h

This file declares two functions, and one type, for bypassing the normal function
call and return discipline (useful for dealing with unusual conditions encountered
in a low-level function of a program). It also defines the jmp_buf structure type
required by these routines.

setjmp

int setjmp(jmp_buf env)

The calling environment is saved in env, for later use by the longjmp function. If
the return is from a direct invocation, the setjmp function returns the value zero.
If the return is from a call to the longjmp function, the setjmp function returns a
non-zero value.

longjmp

void longjmp(jmp_buf env, int val)

The environment saved in env by the most recent call to setjmp is restored. If
there has been no such call, or if the function containing the call to setjmp has
terminated execution (eg with a return statement) in the interim, the behaviour is
undefined. All accessible objects have values as at the time longjmp was called,
except that the values of objects of automatic storage duration that do not have
volatile type and that have been changed between the setjmp and longjmp calls
are indeterminate.

As it bypasses the usual function call and return mechanism, the longjmp
function executes correctly in contexts of interrupts, signals and any of their
associated functions. However, if the longjmp function is invoked from a nested
signal handler (that is, from a function invoked as a result of a signal raised during
the handling of another signal), the behaviour is undefined.

After longjmp is completed, program execution continues as if the corresponding
call to setjmp had just returned the value specified by val. The longjmp
function cannot cause setjmp to return the value 0; if val is 0, setjmp returns
the value 1.
151

signal.h
signal.h

Signal declares a type (sig_atomic_t) and two functions.

It also defines several macros for handling various signals (conditions that may be
reported during program execution). These are SIG_DFL (default routine),
SIG_IGN (ignore signal routine) and SIG_ERR (dummy routine used to flag error
return from signal).

void (*signal (int sig, void (*func)(int)))(int)

Think of this as

typedef void Handler(int);
Handler *signal(int, Handler *);

Chooses one of three ways in which receipt of the signal number sig is to be
subsequently handled. If the value of func is SIG_DFL, default handling for that
signal will occur. If the value of func is SIG_IGN, the signal will be ignored.
Otherwise func points to a function to be called when that signal occurs.

When a signal occurs, if func points to a function, first the equivalent of
signal(sig, SIG_DFL) is executed. (If the value of sig is SIGILL, whether
the reset to SIG_DFL occurs is implementation-defined (under RISC OS the reset
does occur)). Next, the equivalent of (*func)(sig); is executed. The function
may terminate by calling the abort, exit or longjmp function. If func executes
a return statement and the value of sig was SIGFPE or any other
implementation-defined value corresponding to a computational exception, the
behaviour is undefined. Otherwise, the program will resume execution at the point
it was interrupted.

If the signal occurs other than as a result of calling the abort or raise function,
the behaviour is undefined if the signal handler calls any function in the standard
library other than the signal function itself or refers to any object with static
storage duration other than by assigning a value to a volatile static variable of type
sig_atomic_t. At program start-up, the equivalent of signal(sig,
SIG_IGN) may be executed for some signals selected in an
implementation-defined manner (under RISC OS this does not occur); the
equivalent of signal(sig, SIG_DFL) is executed for all other signals defined
by the implementation.

If the request can be honoured, the signal function returns the value of func for
most recent call to signal for the specified signal sig. Otherwise, a value of
SIG_ERR is returned and the integer expression errno is set to indicate the error.
152

The C library
raise

int raise(int /*sig*/)

Sends the signal sig to the executing program. Returns zero if successful, non-zero
if unsuccessful.
153

stdalign.h
stdalign.h

The stdalign.h header file is part of the C18 extensions to the C language,
providing support for variable alignment.

Principally, it defines the macros alignas and alignof.

This header also includes the macros __alignas_is_defined and
__alignof_is_defined which are both set to 1. This may be useful to prevent
other conflicting redefinitions of the above two macros, or to allow fallback
implementations with compilers that lack these C18 features.
154

The C library
stdarg.h

This file declares a type and defines three macros, for advancing through a list of
arguments whose number and types are not known to the called function when it is
translated. A function may be called with a variable number of arguments of
differing types. Its parameter list contains one or more parameters, the rightmost
of which plays a special role in the access mechanism, and will be called parmN in
this description.

va_list

char *va_list[1]

An array type suitable for holding information needed by the macro va_arg and
the function va_end. The called function declares a variable (referred to as ap)
having type va_list. The variable ap may be passed as an argument to another
function. va_list is an array type so that when an object of that type is passed as
an argument it gets passed by reference, but this is not required by the ISO
specification and cannot be relied on.

va_start

va_start(ap, parmN)

The va_start macro will be executed before any access to the unnamed
arguments. The parameter ap points to an object that has type va_list. The
va_start macro initialises ap for subsequent use by va_arg and va_end. The
parameter parmN is the identifier of the rightmost parameter in the variable
parameter list in the function definition (the one just before the , ...). If the
parameter parmN is declared with the register storage class the behaviour is
undefined.

Returns: no value.

va_arg

va_arg(ap, type)

The va_arg macro expands to an expression that has the type and value of the
next argument in the call. The parameter ap is the same as the va_list ap
initialised by va_start. Each invocation of va_arg modifies ap so that
successive arguments are returned in turn. The parameter type is a type name
such that the type of a pointer to an object that has the specified type can be
155

stdarg.h
obtained simply by postfixing a * to type. If type disagrees with the type of the
actual next argument (as promoted according to the default argument
promotions), the behaviour is undefined.

Returns: The first invocation of the va_arg macro after that of the va_start
macro returns the value of the argument after that specified by parmN. Successive
invocations return the values of the remaining arguments in succession. Care is
taken in va_arg so that illegal things like va_arg(ap,char) – which may seem
natural but are in fact illegal – are caught. va_arg(ap,float) is wrong but
cannot be patched up at the C macro level.

va_copy

va_copy(dest, src)

The va_copy macro initialises dest to be at the position that src is at after the
current sequence of va_arg invocations have been performed on it. Neither
va_copy nor va_start may be used again on dest without an intervening use
of va_end on dest, otherwise the behaviour is undefined.

va_end

va_end(ap)

The va_end macro facilitates a normal return from the function whose variable
argument list was referenced by the expansion of va_start that initialised the
va_list ap. If the va_end macro is not invoked before the return, the behaviour
is undefined.
156

The C library
stdbool.h

The stdbool.h header file is part of the C99 extensions to the C language,
providing support for logical booleans.

It defines the macro bool which you can use in your programs to hold boolean
state, internally this expands to _Bool which is the compiler’s native boolean
type.

Values for true and false are also defined as macros.

This header also includes the macro __bool_true_false_are_defined
which is set to 1. This may be useful to prevent other conflicting redefinitions of
the above three macros, or to allow fallback implementations with compilers that
lack these C99 features.
157

stddef.h
stddef.h

This file contains a macro for calculating the offset of fields within a structure. It
also defines the pointer constant NULL and three types.

ptrdiff_t(here int) the signed integral type of the result of
subtracting two pointers

size_t(here unsigned int) the unsigned integral type of the result of
the sizeof operator

wchar_t(here int) also in stdlib.h. An integral type whose
range of values can represent distinct codes
for all members of the largest extended
character set specified among the supported
locales; the null character has the code
value zero and each member of the basic
character set has a code value when used as
the lone character in an integer character
constant.

size_t offsetof(type, member)
Expands to an integral constant expression
that has type size_t, the value of which is
the offset in bytes from the beginning of a
structure designated by type, of the
member designated by member (if the
specified member is a bit-field, the
behaviour is undefined).
158

The C library
stdint.h

The stdint.h library header file is part of the C99 language extensions. It
declares a group of specific width integer types, and accompanying macros. It
should be considered in conjunction with the inttypes.h header file described
on page 143 which, together, allow highly portable C programs to be written.

Integers are sized in power-of-2 multiples of the smallest memory building block,
the byte, so in the following five categories the definition of N can be 8, 16, 32 or 64:

● Specific width types
Unsigned – uintN_t, range 0 to UINTN_MAX
Signed – intN_t, range INTN_MIN to INTN_MAX

● Least width types which possibly have unused bits in some implementations
Unsigned – uint_leastN_t, range 0 to UINT_LEASTN_MAX
Signed – int_leastN_t, range INT_LEASTN_MIN to INT_LEASTN_MAX

● Fastest types which are implemented with the most computationally efficient
underlying type for the platform in question. On RISC OS this would most
often be a 32 bit integer to match the AArch32 register set
Unsigned – uint_fastN_t, range 0 to UINT_FASTN_MAX
Signed – int_fastN_t, range INT_FASTN_MIN to INT_FASTN_MAX

● Integers to hold pointers where pointer arithmetic is required, uintptr_t
and intptr_t. Again, on RISC OS these will be 32 bit integers to match the
AArch32 register set. UINTPTR_MAX, INTPTR_MIN, and INTPTR_MAX
describe the range of values as might be expected.

● Integers of greatest width for the implementation, uintmax_t and
intmax_t. UINTMAX_MAX, INTMAX_MIN, and INTMAX_MAX describe the
range of values as might be expected.

Several other integer limits of types not declared in stdint.h are provided for
completeness. For stddef.h there are: PTRDIFF_MIN and PTRDIFF_MAX for
ptrdiff_t; SIZE_MAX for size_t; and WCHAR_MIN and WCHAR_MAX for
wchar_t. For signal.h there are: SIG_ATOMIC_MIN and SIG_ATOMIC_MAX
for sig_atomic_t.

Constants held in your program source code can also be expressed definitively
using a group of macros that append the qualifier letter required to declare the
integer of that type on the platform in question. They are

INTN_C(value) and UINTN_C(value)
INTMAX_C(value) and UINTMAX_C(value)
159

stdint.h
for the signed and unsigned types respectively. Using these macros avoids
compiler warnings when declaring constants which are not the compiler’s native
integer type.
160

The C library
stdio.h

stdio declares a few types, several macros, and many functions for performing
input and output. For a discussion on Streams and Files refer to sections 7.19.2
and 7.19.3 in the ISO standard or to one of the other references given in the
Introduction to this Guide.

FILE is an object capable of recording all information needed to
control a stream, such as its file position indicator, a pointer to its
associated buffer, an error indicator that records whether a
read/write error has occurred and an end-of-file indicator that
records whether the end-of-file has been reached. The objects
contained in the #ifdef __system_io clause are for system
use only, and cannot be relied on between releases of C.

fpos_t fpos_t is an object capable of recording all information needed
to specify uniquely every position within a file.

off_t off_t is an object capable of recording the offset from any
position within a file to any other position within that file. It is
only defined if the macro _LARGEFILE_SOURCE or
_LARGEFILE64_SOURCE has been defined. See Large file support
on page 128.

fpos64_t fpos64_t is the equivalent of fpos_t and is used in its place
when an application explicitly uses the 64-bit file extension
functions fgetpos64 and fsetpos64. It is only defined if the
macro _LARGEFILE64_SOURCE has been defined. See Large file
support on page 128.

off64_t off64_t is the equivalent of off_t and is used in its place
when an application explicitly uses the 64-bit file extension
functions ftello64 and fseeko64. It is only defined if the
macro _LARGEFILE64_SOURCE has been defined. See Large file
support on page 128.

remove

int remove(const char * filename)

Causes the file whose name is the string pointed to by filename to be removed.
Subsequent attempts to open the file will fail, unless it is created anew. If the file is
open, the behaviour of the remove function is implementation-defined (under
RISC OS the operation fails).
161

stdio.h
Returns: zero if the operation succeeds, non-zero if it fails.

rename

int rename(const char * old, const char * new)

Causes the file whose name is the string pointed to by old to be henceforth known
by the name given by the string pointed to by new. The file named old is
effectively removed. If a file named by the string pointed to by new exists prior to
the call of the rename function, the behaviour is implementation-defined (under
RISC OS, the operation fails).

Returns: zero if the operation succeeds, non-zero if it fails, in which case if the file
existed previously it is still known by its original name.

tmpfile

FILE *tmpfile(void)

Creates a temporary binary file that will be automatically removed when it is closed
or at program termination. The file is created if possible in Wimp$ScrapDir, or
failing that, in the directory $.tmp; it is then opened for update.

Returns: a pointer to the stream of the file that it created. If the file cannot be
created, a null pointer is returned.

tmpfile64

FILE *tmpfile64(void)

This function is the same as tmpfile and is used in its place when an application
wishes to use the explicit 64-bit file extension functions fgetpos64,
fsetpos64, ftello64 and fseeko64. It is only defined if the macro
_LARGEFILE64_SOURCE has been defined. See Large file support on page 128.

tmpnam

char *tmpnam(char * s)

Generates a string that is not the same as the name of an existing file. The tmpnam
function generates a different string each time it is called, up to TMP_MAX times. If
it is called more than TMP_MAX times, the behaviour is implementation-defined
(under RISC OS the algorithm for the name generation works just as well after
tmpnam has been called more than TMP_MAX times as before; a name clash is
impossible in any single half year period).
162

The C library
Returns: If the argument is a null pointer, the tmpnam function leaves its result in
an internal static object and returns a pointer to that object. Subsequent calls to
the tmpnam function may modify the same object. If the argument is not a null
pointer, it is assumed to point to an array of at least L_tmpnam characters; the
tmpnam function writes its result in that array and returns the argument as its
value.

fclose

int fclose(FILE * stream)

Causes the stream pointed to by stream to be flushed and the associated file to
be closed. Any unwritten buffered data for the stream are delivered to the host
environment to be written to the file; any unread buffered data are discarded. The
stream is disassociated from the file. If the associated buffer was automatically
allocated, it is deallocated.

Returns: zero if the stream was successfully closed, or EOF if any errors were
detected or if the stream was already closed.

fflush

int fflush(FILE * stream)

If the stream points to an output or update stream in which the most recent
operation was output, the fflush function causes any unwritten data for that
stream to be delivered to the host environment to be written to the file. If the
stream points to an input or update stream, the fflush function undoes the
effect of any preceding ungetc operation on the stream.

Returns: EOF if a write error occurs.

fopen

FILE *fopen(const char * filename, const char * mode)

Opens the file whose name is the string pointed to by filename, and associates
a stream with it. The argument mode points to a string beginning with one of the
following sequences:

r open text file for reading
w create text file for writing, or truncate to zero length
a append; open text file or create for writing at eof
rb open binary file for reading
wb create binary file for writing, or truncate to zero length
ab append; open binary file or create for writing at eof
163

stdio.h
r+ open text file for update (reading and writing)
w+ create text file for update, or truncate to zero length
a+ append; open text file or create for update, writing at eof
r+b or rb+ open binary file for update (reading and writing)
w+b or wb+ create binary file for update, or truncate to zero length
a+b or ab+ append; open binary file or create for update, writing at eof

● Opening a file with read mode (r as the first character in the mode argument)
fails if the file does not exist or cannot be read.

● Opening a file with append mode (a as the first character in the mode
argument) causes all subsequent writes to be forced to the current end of file,
regardless of intervening calls to the fseek function.

● Opening a file with create mode (w as the first character in the mode
argument) may also, starting with C18 supporting versions of the
SharedCLibrary, be suffixed with x to denote exclusive access. Exclusive
access guarantees that no other program has the file open for writing at the
same time.

● In some implementations, opening a binary file with append mode (b as the
second or third character in the mode argument) may initially position the file
position indicator beyond the last data written, because of null padding (but
not under RISC OS).

● When a file is opened with update mode (+ as the second or third character in
the mode argument), both input and output may be performed on the
associated stream. However, output may not be directly followed by input
without an intervening call to the fflush function or to a file positioning
function (fseek, fsetpos, or rewind), nor may input be directly followed
by output without an intervening call to the fflush function or to a file
positioning function, unless the input operation encounters end-of-file.

● Opening a file with update mode may open or create a binary stream in some
implementations (but not under RISC OS). When opened, a stream is fully
buffered if and only if it does not refer to an interactive device. The error and
end-of-file indicators for the stream are cleared.

Returns: a pointer to the object controlling the stream. If the open operation fails,
fopen returns a null pointer.

fopen64

FILE *fopen64(const char * filename, const char * mode)
164

The C library
This function is the same as fopen and is used in its place when an application
wishes to use the explicit 64-bit file extension functions fgetpos64,
fsetpos64, ftello64 and fseeko64. It is only defined if the macro
_LARGEFILE64_SOURCE has been defined. See Large file support on page 128.

freopen

FILE *freopen(const char * filename, const char * mode,
 FILE * stream)

Opens the file whose name is the string pointed to by filename and associates
the stream pointed to by stream with it. The mode argument is used just as in the
fopen function. The freopen function first attempts to close any file that is
associated with the specified stream. Failure to close the file successfully is
ignored. The error and end-of-file indicators for the stream are cleared.

Returns: a null pointer if the operation fails. Otherwise, freopen returns the value
of the stream.

freopen64

FILE *freopen64(const char * filename, const char * mode,
 FILE * stream)

This function is the same as freopen and is used in its place when an application
wishes to use the explicit 64-bit file extension functions fgetpos64,
fsetpos64, ftello64 and fseeko64. It is only defined if the macro
_LARGEFILE64_SOURCE has been defined. See Large file support on page 128.

setbuf

void setbuf(FILE * stream, char * buf)

Except that it returns no value, the setbuf function is equivalent to the setvbuf
function invoked with the values _IOFBF for mode and BUFSIZ for size, or if buf
is a null pointer, with the value _IONBF for mode.

Returns: no value.
165

stdio.h
setvbuf

int setvbuf(FILE * stream, char * buf, int mode, size_t
 size)

This may be used after the stream pointed to by stream has been associated with
an open file but before it is read or written. The argument mode determines how
stream will be buffered, as follows:

● _IOFBF causes input/output to be fully buffered.

● _IOLBF causes output to be line buffered (the buffer will be flushed when a
newline character is written, when the buffer is full, or when interactive input is
requested).

● _IONBF causes input/output to be completely unbuffered.

If buf is not the null pointer, the array it points to may be used instead of an
automatically allocated buffer (the buffer must have a lifetime at least as great as
the open stream, so the stream should be closed before a buffer that has
automatic storage duration is deallocated upon block exit). The argument size
specifies the size of the array. The contents of the array at any time are
indeterminate. buf must be non-null.

Returns: zero on success, or non-zero if an invalid value is given for mode or size,
or if the request cannot be honoured.

fprintf

int fprintf(FILE * stream, const char * format, ...)

writes output to the stream pointed to by stream, under control of the string
pointed to by format that specifies how subsequent arguments are converted for
output. If there are insufficient arguments for the format, the behaviour is
undefined. If the format is exhausted while arguments remain, the excess
arguments are evaluated but otherwise ignored. The fprintf function returns
when the end of the format string is reached. The format must be a multibyte
character sequence, beginning and ending in its initial shift state (in all locales
supported under RISC OS this is the same as a plain character string). The format
is composed of zero or more directives: ordinary multibyte characters (not %),
which are copied unchanged to the output stream; and conversion specifiers, each
of which results in fetching zero or more subsequent arguments. Each conversion
specification is introduced by the character %. For a complete description of the
available conversion specifiers refer to section 7.19.6.1 in the ISO standard or to
one of the other references in the Introduction to this Guide. The minimum value for
the maximum number of characters that can be produced by any single conversion
is at least 509.
166

The C library
A brief and incomplete description of conversion specifications is:

[flags][field width][.precision]specifier-char

flags is most commonly -, indicating left justification of the output item within
the field. If omitted, the item will be right justified.

field width is the minimum width of field to use. If the formatted item is
longer, a bigger field will be used; otherwise, the item will be right (left) justified in
the field.

precision is the minimum number of digits to print for a d, i, o, u, x or X
conversion, the number of digits to appear after the decimal digit for e, E, a, A and
f conversions, the maximum number of significant digits for g and G conversions,
or the maximum number of characters to be written from strings in an s
conversion.

Either or both of field width and precision may be *, indicating that the
value is an argument to printf.

The specifier chars are:

d, i int printed as signed decimal
o, u, x, X unsigned int value printed as unsigned octal, decimal or

hexadecimal
f double value printed in the style [-]ddd.ddd
a, A hexadecimal double value printed in the style [-]0xh.hhh
e, E double value printed in the style [-]d.ddd…e±dd
g, G double printed in f or e format, whichever is more

appropriate
c int value printed as unsigned char
s char * value printed as a string of characters
p void * argument printed as a hexadecimal address
% write a literal %

Returns: the number of characters transmitted, or a negative value if an output
error occurred.

printf

int printf(const char * format, ...)

Equivalent to fprintf with the argument stdout interposed before the
arguments to printf.

Returns: the number of characters transmitted, or a negative value if an output
error occurred.
167

stdio.h
sprintf

int sprintf(char * s, const char * format, ...)

Equivalent to fprintf, except that the argument s specifies an array into which
the generated output is to be written, rather than to a stream. A null character is
written at the end of the characters written; it is not counted as part of the returned
sum.

Returns: the number of characters written to the array, not counting the
terminating null character.

snprintf

int snprintf(char * s, size_t n, const char * format, ...)

Equivalent to sprintf, except the buffer size n is declared. In situations where
the amount of output exceeds the size of the buffer, this prevents buffer overruns.

If n is zero, nothing is written and s may be a null pointer. Otherwise, output
characters beyond the n-1st are discarded rather than being written to the array,
and a null character is written at the end of the characters actually written into the
array.

Returns: the number of characters that would have been written had n been
sufficiently large, not counting the terminating null character. Thus, the
null-terminated output has been completely written if and only if the returned
value is non-negative and less than n.

fscanf

int fscanf(FILE * stream, const char * format, ...)

Reads input from the stream pointed to by stream, under control of the string
pointed to by format that specifies the admissible input sequences and how they
are to be converted for assignment, using subsequent arguments as pointers to the
objects to receive the converted input. If there are insufficient arguments for the
format, the behaviour is undefined. If the format is exhausted while arguments
remain, the excess arguments are evaluated but otherwise ignored. The format is
composed of zero or more directives, one or more white-space characters, an
ordinary character (not %), or a conversion specification. Each conversion
specification is introduced by the character %. For a description of the available
conversion specifiers refer to section 7.19.6.1 in the ISO standard, or to any of the
references listed in the chapter Introduction on page 1. A brief list is given above,
under the entry for fprintf.
168

The C library
If end-of-file is encountered during input, conversion is terminated. If end-of-file
occurs before any characters matching the current directive have been read (other
than leading white space, where permitted), execution of the current directive
terminates with an input failure; otherwise, unless execution of the current
directive is terminated with a matching failure, execution of the following directive
(if any) is terminated with an input failure.

If conversions terminate on a conflicting input character, the offending input
character is left unread in the input stream. Trailing white space (including newline
characters) is left unread unless matched by a directive. The success of literal
matches and suppressed assignments is not directly determinable other than via
the %n directive.

Returns: the value of the macro EOF if an input failure occurs before any
conversion. Otherwise, the fscanf function returns the number of input items
assigned, which can be fewer than provided for, or even zero, in the event of an
early conflict between an input character and the format.

scanf

int scanf(const char * format, ...)

Equivalent to fscanf with the argument stdin interposed before the arguments
to scanf.

Returns: the value of the macro EOF if an input failure occurs before any
conversion. Otherwise, the scanf function returns the number of input items
assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

sscanf

int sscanf(const char * s, const char * format, ...)

Equivalent to fscanf except that the argument s specifies a string from which the
input is to be obtained, rather than from a stream. Reaching the end of the string is
equivalent to encountering end-of-file for the fscanf function.

Returns: the value of the macro EOF if an input failure occurs before any
conversion. Otherwise, the scanf function returns the number of input items
assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

vprintf

int vprintf(const char * format, va_list arg)
169

stdio.h
Equivalent to printf, with the variable argument list replaced by arg, which has
been initialised by the va_start macro (and possibly subsequent va_arg calls).
The vprintf function does not invoke the va_end function.

Returns: the number of characters transmitted, or a negative value if an output
error occurred.

vfprintf

int vfprintf(FILE * stream,const char * format, va_list
 arg)

Equivalent to fprintf, with the variable argument list replaced by arg, which
has been initialised by the va_start macro (and possibly subsequent va_arg
calls). The vfprintf function does not invoke the va_end function.

Returns: the number of characters transmitted, or a negative value if an output
error occurred.

vsprintf

int vsprintf(char * s, const char * format, va_list arg)

Equivalent to sprintf, with the variable argument list replaced by arg, which
has been initialised by the va_start macro (and possibly subsequent va_arg
calls). The vsprintf function does not invoke the va_end function.

Returns: the number of characters written in the array, not counting the
terminating null character.

vsnprintf

int vsnprintf(char * s, size_t n, const char * format,
 va_list arg)

Equivalent to snprintf, with the variable argument list replaced by arg, which
has been initialised by the va_start macro (and possibly subsequent va_arg
calls). The vsnprintf function does not invoke the va_end function.

Returns: the number of characters that would have been written had n been
sufficiently large, not counting the terminating null character. Thus, the
null-terminated output has been completely written if and only if the returned
value is non-negative and less than n.
170

The C library
vscanf

int vscanf(const char * format, va_list arg)

Equivalent to scanf, with the variable argument list replaced by arg, which has
been initialised by the va_start macro (and possibly subsequent va_arg calls).
The vscanf function does not invoke the va_end function.

Returns: the value of the macro EOF if an input failure occurs before any
conversion. Otherwise, the vscanf function returns the number of input items
assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

vfscanf

int vfscanf(FILE * stream, const char * format,
 va_list arg)

Equivalent to fscanf, with the variable argument list replaced by arg, which has
been initialised by the va_start macro (and possibly subsequent va_arg calls).
The vfscanf function does not invoke the va_end function.

Returns: the value of the macro EOF if an input failure occurs before any
conversion. Otherwise, the vscanf function returns the number of input items
assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

vsscanf

int vsscanf(const char * s, const char * format,
 va_list arg)

Equivalent to sscanf, with the variable argument list replaced by arg, which has
been initialised by the va_start macro (and possibly subsequent va_arg calls).
The vsscanf function does not invoke the va_end function.

Returns: the value of the macro EOF if an input failure occurs before any
conversion. Otherwise, the vsscanf function returns the number of input items
assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

fgetc

int fgetc(FILE * stream)
171

stdio.h
Obtains the next character (if present) as an unsigned char converted to an int,
from the input stream pointed to by stream, and advances the associated file
position indicator (if defined).

Returns: the next character from the input stream pointed to by stream. If the
stream is at end-of-file, the end-of-file indicator is set and fgetc returns EOF. If a
read error occurs, the error indicator is set and fgetc returns EOF.

fgets

char *fgets(char * s, int n, FILE * stream)

Reads at most one less than the number of characters specified by n from the
stream pointed to by stream into the array pointed to by s. No additional
characters are read after a newline character (which is retained) or after end-of-file.
A null character is written immediately after the last character read into the array.

Returns: s if successful. If end-of-file is encountered and no characters have been
read into the array, the contents of the array remain unchanged and a null pointer
is returned. If a read error occurs during the operation, the array contents are
indeterminate and a null pointer is returned.

fputc

int fputc(int c, FILE * stream)

Writes the character specified by c (converted to an unsigned char) to the output
stream pointed to by stream, at the position indicated by the associated file
position indicator (if defined), and advances the indicator appropriately. If the file
cannot support positioning requests, or if the stream was opened with append
mode, the character is appended to the output stream.

Returns: the character written. If a write error occurs, the error indicator is set and
fputc returns EOF.

fputs

int fputs(const char * s, FILE * stream)

Writes the string pointed to by s to the stream pointed to by stream. The
terminating null character is not written.

Returns: EOF if a write error occurs; otherwise it returns a non-negative value.
172

The C library
getc

int getc(FILE * stream)

Equivalent to fgetc except that it may be (and is under RISC OS) implemented as
a macro. stream may be evaluated more than once, so the argument should never
be an expression with side effects.

Returns: the next character from the input stream pointed to by stream. If the
stream is at end-of-file, the end-of-file indicator is set and getc returns EOF. If a
read error occurs, the error indicator is set and getc returns EOF.

getchar

int getchar(void)

Equivalent to getc with the argument stdin.

Returns: the next character from the input stream pointed to by stdin. If the
stream is at end-of-file, the end-of-file indicator is set and getchar returns EOF.
If a read error occurs, the error indicator is set and getchar returns EOF.

gets

char *gets(char * s)

Reads characters from the input stream pointed to by stdin into the array
pointed to by s, until end-of-file is encountered or a newline character is read. Any
newline character is discarded, and a null character is written immediately after the
last character read into the array.

Note: Due to security concerns of overwriting the array s whose size is not known,
this function should be considered deprecated. In C18 it has been removed
entirely.

Returns: s if successful. If end-of-file is encountered and no characters have been
read into the array, the contents of the array remain unchanged and a null pointer
is returned. If a read error occurs during the operation, the array contents are
indeterminate and a null pointer is returned.

putc

int putc(int c, FILE * stream)

Equivalent to fputc except that it may be (and is under RISC OS) implemented as
a macro. stream may be evaluated more than once, so the argument should never
be an expression with side effects.
173

stdio.h
Returns: the character written. If a write error occurs, the error indicator is set and
putc returns EOF.

putchar

int putchar(int c)

Equivalent to putc with the second argument stdout.

Returns: the character written. If a write error occurs, the error indicator is set and
putc returns EOF.

puts

int puts(const char * s)

Writes the string pointed to by s to the stream pointed to by stdout, and
appends a newline character to the output. The terminating null character is not
written.

Returns: EOF if a write error occurs; otherwise it returns a non-negative value.

ungetc

int ungetc(int c, FILE * stream)

Pushes the character specified by c (converted to an unsigned char) back onto the
input stream pointed to by stream. The character will be returned by the next
read on that stream. An intervening call to the fflush function or to a file
positioning function (fseek, fsetpos, rewind) discards any pushed-back
characters. The external storage corresponding to the stream is unchanged. One
character pushback is guaranteed. If the unget function is called too many times
on the same stream without an intervening read or file positioning operation on
that stream, the operation may fail. If the value of c equals that of the macro EOF,
the operation fails and the input stream is unchanged.

A successful call to the ungetc function clears the end-of-file indicator. The value
of the file position indicator after reading or discarding all pushed-back characters
will be the same as it was before the characters were pushed back. For a text
stream, the value of the file position indicator after a successful call to the ungetc
function is unspecified until all pushed-back characters are read or discarded. For
a binary stream, the file position indicator is decremented by each successful call
to the ungetc function; if its value was zero before a call, it is indeterminate after
the call.

Returns: the character pushed back after conversion, or EOF if the operation fails.
174

The C library
fread

size_t fread(void * ptr,size_t size,
 size_t nmemb, FILE * stream)

Reads into the array pointed to by ptr, up to nmemb members whose size is
specified by size, from the stream pointed to by stream. The file position
indicator (if defined) is advanced by the number of characters successfully read. If
an error occurs, the resulting value of the file position indicator is indeterminate. If
a partial member is read, its value is indeterminate. The ferror or feof function
shall be used to distinguish between a read error and end-of-file.

Returns: the number of members successfully read, which may be less than nmemb
if a read error or end-of-file is encountered. If size or nmemb is zero, fread
returns zero and the contents of the array and the state of the stream remain
unchanged.

fwrite

size_t fwrite(const void * ptr,
 size_t size, size_t nmemb, FILE * stream)

Writes, from the array pointed to by ptr up to nmemb members whose size is
specified by size, to the stream pointed to by stream. The file position indicator
(if defined) is advanced by the number of characters successfully written. If an error
occurs, the resulting value of the file position indicator is indeterminate.

Returns: the number of members successfully written, which will be less than
nmemb only if a write error is encountered.

fgetpos

int fgetpos(FILE * stream, fpos_t * pos)

Stores the current value of the file position indicator for the stream pointed to by
stream in the object pointed to by pos. The value stored contains unspecified
information usable by the fsetpos function for repositioning the stream to its
position at the time of the call to the fgetpos function.

Returns: zero, if successful. Otherwise non-zero is returned and the integer
expression errno is set to an implementation-defined non-zero value (under
RISC OS fgetpos cannot fail).
175

stdio.h
fgetpos64

int fgetpos64(FILE * stream, fpos64_t * pos)

The fgetpos64 function is the same as the fgetpos function except that the
pos argument is of type fpos64_t. It is only defined if the macro
_LARGEFILE64_SOURCE has been defined. See Large file support on page 128.

fseek

int fseek(FILE * stream, long int offset, int whence)

Sets the file position indicator for the stream pointed to by stream. For a binary
stream, the new position is at the signed number of characters specified by
offset away from the point specified by whence. The specified point is the
beginning of the file for SEEK_SET, the current position in the file for SEEK_CUR,
or end-of-file for SEEK_END. A binary stream need not meaningfully support
fseek calls with a whence value of SEEK_END, though the Acorn
implementation does. For a text stream, offset is either zero or a value returned
by an earlier call to the ftell function on the same stream; whence is then
SEEK_SET. The Acorn implementation also allows a text stream to be positioned
in exactly the same manner as a binary stream, but this is not portable. The fseek
function clears the end-of-file indicator and undoes any effects of the ungetc
function on the same stream. After an fseek call, the next operation on an update
stream may be either input or output.

Returns: non-zero only for a request that cannot be satisfied.

fseeko

int fseeko(FILE * stream, off_t offset, int whence)

The fseeko function is the same as the fseek function except that the offset
argument is of type off_t. It is only defined if the macro _LARGEFILE_SOURCE
or _LARGEFILE64_SOURCE has been defined. See Large file support on page 128.

fseeko64

int fseeko64(FILE * stream, off64_t offset, int whence)

The fseeko64 function is the same as the fseek function except that the offset
argument is of type off64_t. It is only defined if the macro
_LARGEFILE64_SOURCE has been defined. See Large file support on page 128.
176

The C library
fsetpos

int fsetpos(FILE * stream, const fpos_t * pos)

Sets the file position indicator for the stream pointed to by stream according to
the value of the object pointed to by pos, which is a value returned by an earlier
call to the fgetpos function on the same stream. The fsetpos function clears
the end-of-file indicator and undoes any effects of the ungetc function on the
same stream. After an fsetpos call, the next operation on an update stream may
be either input or output.

Returns: zero, if successful. Otherwise non-zero is returned and the integer
expression errno is set to an implementation-defined non-zero value (under
RISC OS the value is that of EDOM in math.h).

fsetpos64

int fsetpos64(FILE * stream, const fpos64_t * pos)

The fsetpos64 function is the same as the fsetpos function except that the
pos argument is of type fpos64_t. It is only defined if the macro
_LARGEFILE64_SOURCE has been defined. See Large file support on page 128.

ftell

long int ftell(FILE * stream)

Obtains the current value of the file position indicator for the stream pointed to by
stream. For a binary stream, the value is the number of characters from the
beginning of the file. For a text stream, the file position indicator contains
unspecified information, usable by the fseek function for returning the file
position indicator to its position at the time of the ftell call; the difference
between two such return values is not necessarily a meaningful measure of the
number of characters written or read. However, for the Acorn implementation, the
value returned is merely the byte offset into the file, whether the stream is text or
binary.

Returns: if successful, the current value of the file position indicator. On failure, the
ftell function returns –1L and sets the integer expression errno to an
implementation-defined non-zero value (under RISC OS ftell cannot fail).
177

stdio.h
ftello

off_t ftello(FILE * stream)

The ftello function is the same as the ftell function except that the return
value is of type off_t. It is only defined if the macro _LARGEFILE_SOURCE or
_LARGEFILE64_SOURCE has been defined. See Large file support on page 128.

ftello64

off64_t ftello64(FILE * stream)

The ftello64 function is the same as the ftell function except that the return
value is of type off64_t. It is only defined if the macro _LARGEFILE64_SOURCE
has been defined. See Large file support on page 128.

rewind

void rewind(FILE * stream)

Sets the file position indicator for the stream pointed to by stream to the
beginning of the file. It is equivalent to (void)fseek(stream, 0L,
SEEK_SET) except that the error indicator for the stream is also cleared.

Returns: no value.

clearerr

void clearerr(FILE * stream)

Clears the end-of-file and error indicators for the stream pointed to by stream.
These indicators are cleared only when the file is opened or by an explicit call to
the clearerr function or to the rewind function.

Returns: no value.

feof

int feof(FILE * stream)

Tests the end-of-file indicator for the stream pointed to by stream.

Returns: non-zero if the end-of-file indicator is set for stream.
178

The C library
ferror

int ferror(FILE * stream)

Tests the error indicator for the stream pointed to by stream.

Returns: non-zero if the error indicator is set for stream.

perror

void perror(const char * s)

Maps the error number in the integer expression errno to an error message. It
writes a sequence of characters to the standard error stream thus: first (if s is not a
null pointer and the character pointed to by s is not the null character), the string
pointed to by s followed by a colon and a space; then an appropriate error
message string followed by a newline character. The contents of the error message
strings are the same as those returned by the strerror function with argument
errno, which are implementation-defined.

Returns: no value.
179

stdlib.h
stdlib.h

stdlib.h declares four types, several general purpose functions, and defines
several macros.

atof

double atof(const char * nptr)

Converts the initial part of the string pointed to by nptr to double *
representation.

Returns: the converted value.

atoi

int atoi(const char * nptr)

Converts the initial part of the string pointed to by nptr to int representation.

Returns: the converted value.

atol

long int atol(const char * nptr)

Converts the initial part of the string pointed to by nptr to long int
representation.

Returns: the converted value.

strtod

double strtod(const char * nptr, char ** endptr)

Converts the initial part of the string pointed to by nptr to double representation.
First it decomposes the input string into three parts: an initial, possibly empty,
sequence of white-space characters (as specified by the isspace function), a
subject sequence resembling a floating point constant, and a final string of one or
more unrecognised characters, including the terminating null character of the
input string. It then attempts to convert the subject sequence to a floating point
number, and returns the result. A pointer to the final string is stored in the object
pointed to by endptr, provided that endptr is not a null pointer.
180

The C library
Returns: the converted value if any. If no conversion could be performed, zero is
returned. If the correct value is outside the range of representable values, plus or
minus HUGE_VAL is returned (according to the sign of the value), and the value of
the macro ERANGE is stored in errno. If the correct value would cause underflow,
zero is returned and the value of the macro ERANGE is stored in errno.

strtol

long int strtol(const char * nptr, char **endptr, int
 base)

Converts the initial part of the string pointed to by nptr to long int
representation. First it decomposes the input string into three parts: an initial,
possibly empty, sequence of white-space characters (as specified by the isspace
function), a subject sequence resembling an integer represented in some radix
determined by the value of base, and a final string of one or more unrecognised
characters, including the terminating null character of the input string.

It then attempts to convert the subject sequence to an integer, and returns the
result. If the value of base is 0, the expected form of the subject sequence is that of
an integer constant (described precisely in the ISO standard, section 7.20.1.3),
optionally preceded by a + or - sign, but not including an integer suffix. If the value
of base is between 2 and 36, the expected form of the subject sequence is a
sequence of letters and digits representing an integer with the radix specified by
base, optionally preceded by a plus or minus sign, but not including an integer
suffix. The letters from a (or A) through z (or Z) are ascribed the values 10 to 35;
only letters whose ascribed values are less than that of the base are permitted. If
the value of base is 16, the characters 0x or 0X may optionally precede the
sequence of letters and digits following the sign if present. A pointer to the final
string is stored in the object pointed to by endptr, provided that endptr is not a
null pointer.

Returns: the converted value if any. If no conversion could be performed, zero is
returned. If the correct value is outside the range of representable values,
LONG_MAX or LONG_MIN is returned (according to the sign of the value), and the
value of the macro ERANGE is stored in errno.

strtoll

long long int strtoll(const char * nptr, char **endptr,
 int base)

Converts the initial part of the string pointed to by nptr to long long int
representation. The behaviour is otherwise as for strtol.
181

stdlib.h
strtoul

unsigned long int strtoul(const char * nptr, char **
 endptr, int base)

Converts the initial part of the string pointed to by nptr to unsigned long int
representation. First it decomposes the input string into three parts: an initial,
possibly empty, sequence of white space characters (as determined by the
isspace function), a subject sequence resembling an unsigned integer
represented in some radix determined by the value of base, and a final string of
one or more unrecognised characters, including the terminating null character of
the input string.

It then attempts to convert the subject sequence to an unsigned integer, and
returns the result. If the value of base is zero, the expected form of the subject
sequence is that of an integer constant (described precisely in the ISO standard,
section 7.20.1.3), optionally preceded by a + or - sign, but not including an integer
suffix. If the value of base is between 2 and 36, the expected form of the subject
sequence is a sequence of letters and digits representing an integer with the radix
specified by base, optionally preceded by a + or - sign, but not including an
integer suffix. The letters from a (or A) through z (or Z) stand for the values 10 to 35;
only letters whose ascribed values are less than that of the base are permitted. If
the value of base is 16, the characters 0x or 0X may optionally precede the
sequence of letters and digits following the sign, if present. A pointer to the final
string is stored in the object pointed to by endptr, provided that endptr is not a
null pointer.

Returns: the converted value if any. If no conversion could be performed, zero is
returned. If the correct value is outside the range of representable values,
ULONG_MAX is returned, and the value of the * macro ERANGE is stored in errno.

strtoull

unsigned long long int strtoull(const char * nptr,
 char **endptr, int base)

Converts the initial part of the string pointed to by nptr to unsigned long long int
representation. The behaviour is otherwise as for strtoul.

rand

int rand(void)

Computes a sequence of pseudo-random integers in the range 0 to RAND_MAX,
where RAND_MAX = 0x7fffffff.
182

The C library
Returns: a pseudo-random integer.

srand

void srand(unsigned int seed)

Uses its argument as a seed for a new sequence of pseudo-random numbers to be
returned by subsequent calls to rand. If srand is then called with the same seed
value, the sequence of pseudo-random numbers will be repeated. If rand is called
before any calls to srand have been made, the same sequence is generated as
when srand is first called with a seed value of 1.

calloc

void *calloc(size_t nmemb, size_t size)

Allocates space for an array of nmemb objects, each of whose size is size. The
space is initialised to all bits zero.

Returns: either a null pointer or a pointer to the allocated space.

free

void free(void * ptr)

Causes the space pointed to by ptr to be deallocated (made available for further
allocation). If ptr is a null pointer, no action occurs. Otherwise, if ptr does not
match a pointer earlier returned by aligned_alloc, calloc, malloc or
realloc or if the space has been deallocated by a call to free or realloc, the
behaviour is undefined.

malloc

void *malloc(size_t size)

Allocates space for an object whose size is specified by size and whose value is
indeterminate.

Returns: either a null pointer or a pointer to the allocated space.

realloc

void *realloc(void * ptr, size_t size)
183

stdlib.h
Changes the size of the object pointed to by ptr to the size specified by size. The
contents of the object is unchanged up to the lesser of the new and old sizes. If the
new size is larger, the value of the newly allocated portion of the object is
indeterminate. If ptr is a null pointer, the realloc function behaves like a call to
malloc for the specified size. Otherwise, if ptr does not match a pointer earlier
returned by calloc, malloc or realloc, or if the space has been deallocated by
a call to free or realloc, the behaviour is undefined. If the space cannot be
allocated, the object pointed to by ptr is unchanged. If size is zero and ptr is not
a null pointer, the object it points to is freed.

Returns: either a null pointer or a pointer to the possibly moved allocated space.

aligned_alloc

void *aligned_alloc(size_t alignment, size_t size)

Allocates space for an object whose alignment is specified by alignment, whose
size is specified by size and whose value is indeterminate.

Returns: either a null pointer or a pointer to the allocated space.

abort

void abort(void)

Causes abnormal program termination to occur, unless the signal SIGABRT is
being caught and the signal handler does not return. Whether open output streams
are flushed or open streams are closed or temporary files removed is
implementation-defined (under RISC OS all these occur). An
implementation-defined form of the status ‘unsuccessful termination’ (1 under
RISC OS) is returned to the host environment by means of a call to
raise(SIGABRT).

atexit

int atexit(void (* func)(void))

Registers the function pointed to by func, to be called without its arguments at
normal program termination. It is possible to register at least 32 functions.

Returns: zero if the registration succeeds, non-zero if it fails.

exit

void exit(int status)
184

The C library
Causes normal program termination to occur. If more than one call to the exit
function is executed by a program (for example, by a function registered with
atexit), the behaviour is undefined. First, all functions registered by the atexit
function are called, in the reverse order of their registration. Next, all open output
streams are flushed, all open streams are closed, and all files created by the
tmpfile function are removed. Finally, control is returned to the host
environment. If the value of status is zero or EXIT_SUCCESS, an
implementation-defined form of the status ‘successful termination’ (0 under
RISC OS) is returned. If the value of status is EXIT_FAILURE, an
implementation-defined form of the status ‘unsuccessful termination’ (1 under
RISC OS) is returned. Otherwise the status returned is implementation-defined
(the value of status is returned under RISC OS).

at_quick_exit

int at_quick_exit(void (* func)(void))

Registers the function pointed to by func, to be called without its arguments at
quick normal program termination. It is possible to register at least 32 functions.

Returns: zero if the registration succeeds, non-zero if it fails.

quick_exit

void quick_exit(int status)

Causes normal program termination to occur. No functions registered by the
atexit function or signal handlers registered by the signal function are called.
If a signal is raised while the quick_exit is executing, the behaviour is
undefined. First, all functions registered by the at_quick_exit function are
called, in the reverse order of their registration. Finally, control is returned to the
host environment. If the value of status is zero or EXIT_SUCCESS, an
implementation-defined form of the status ‘successful termination’ (0 under
RISC OS) is returned. If the value of status is EXIT_FAILURE, an
implementation-defined form of the status ‘unsuccessful termination’ (1 under
RISC OS) is returned. Otherwise the status returned is implementation-defined
(the value of status is returned under RISC OS).
185

stdlib.h
getenv

char *getenv(const char * name)

Searches the environment list, provided by the host environment, for a string that
matches the string pointed to by name. The set of environment names and the
method for altering the environment list are implementation-defined.

Returns: a pointer to a string associated with the matched list member. The array
pointed to is not modified by the program, but may be overwritten by a subsequent
call to the getenv function. If the specified name cannot be found, a null pointer
is returned.

system

int system(const char * string)

Passes the string pointed to by string to the host environment to be executed by
a command processor in an implementation-defined manner. A null pointer may
be used for string, to inquire whether a command processor exists. Under
RISC OS, care must be taken, when executing a command, that the command does
not overwrite the calling program. To control this, the string chain: or call:
may immediately precede the actual command. The effect of call: is the same as
if call: were not present. When a command is called, the caller is first moved to
a safe place in application workspace. When the callee terminates, the caller is
restored. This requires enough memory to hold caller and callee simultaneously.
When a command is chained, the caller may be overwritten. If the caller is not
overwritten, the caller exits when the caller terminates. Thus a transfer of control is
effected and memory requirements are minimised.

Returns: If the argument is a null pointer, the system function returns non-zero
only if a command processor is available. If the argument is not a null pointer, it
returns an implementation-defined value (under RISC OS 0 is returned for success
and –2 for failure to invoke the command; any other value is the return code from
the executed command).

bsearch

void *bsearch(const void *key, const void * base,
size_t nmemb, size_t size, int (* compar)
(const void *, const void *))

Searches an array of nmemb objects, the initial member of which is pointed to by
base, for a member that matches the object pointed to by key. The size of each
member of the array is specified by size. The contents of the array must be in
ascending sorted order according to a comparison function pointed to by compar,
186

The C library
which is called with two arguments that point to the key object and to an array
member, in that order. The function returns an integer less than, equal to, or
greater than zero if the key object is considered, respectively, to be less than, to
match, or to be greater than the array member.

Returns: a pointer to a matching member of the array, or a null pointer if no match
is found. If two members compare as equal, which member is matched is
unspecified.

qsort

void qsort(void * base, size_t nmemb, size_t size,
 int (* compar)(const void *, const void *))

Sorts an array of nmemb objects, the initial member of which is pointed to by
base. The size of each object is specified by size. The contents of the array are
sorted in ascending order according to a comparison function pointed to by
compar, which is called with two arguments that point to the objects being
compared. The function returns an integer less than, equal to, or greater than zero
if the first argument is considered to be respectively less than, equal to, or greater
than the second. If two members compare as equal, their order in the sorted array
is unspecified.

abs

int abs(int j)

Computes the absolute value of an integer j. If the result cannot be represented,
the behaviour is undefined.

Returns: the absolute value.

labs

long int labs(long int j)

Computes the absolute value of a long integer j. If the result cannot be
represented, the behaviour is undefined.

Returns: the absolute value.

llabs

long long int llabs(long long int j)
187

stdlib.h
Computes the absolute value of a long long integer j. If the result cannot be
represented, the behaviour is undefined.

Returns: the absolute value.

div

div_t div(int numer, int denom)

Computes the quotient and remainder of the division of the numerator numer by
the denominator denom. If the division is inexact, the resulting quotient is the
integer of lesser magnitude that is the nearest to the algebraic quotient. If the
result cannot be represented, the behaviour is undefined; otherwise, quot *
denom + rem equals numer.

Returns: a structure of type div_t, comprising both the quotient and the
remainder. The structure contains the following members: int quot; int rem.
You may not rely on their order.

ldiv

ldiv_t ldiv(long int numer, long int denom)

Computes the quotient and remainder of the division of the numerator numer by
the denominator denom. If the division is inexact, the sign of the resulting
quotient is that of the algebraic quotient, and the magnitude of the resulting
quotient is the largest integer less than the magnitude of the algebraic quotient. If
the result cannot be represented, the behaviour is undefined; otherwise, quot *
denom + rem equals numer.

Returns: a structure of type ldiv_t, comprising both the quotient and the
remainder. The structure contains the following members: long int quot;
long int rem. You may not rely on their order.

lldiv

lldiv_t lldiv(long long int numer, long long int denom)

Computes the quotient and remainder of the division of the numerator numer by
the denominator denom. If the division is inexact, the sign of the resulting
quotient is that of the algebraic quotient, and the magnitude of the resulting
quotient is the largest integer less than the magnitude of the algebraic quotient. If
the result cannot be represented, the behaviour is undefined; otherwise, quot *
denom + rem equals numer.
188

The C library
Returns: a structure of type lldiv_t, comprising both the quotient and the
remainder. The structure contains the following members: long long int
quot; long long int rem. You may not rely on their order.

Multibyte character functions

The behaviour of the multibyte character functions is affected by the LC_CTYPE
category of the current locale. For a state-dependent encoding, each function is
placed into its initial state by a call for which its character pointer argument, s, is a
null pointer. Subsequent calls with s as other than a null pointer cause the internal
state of the function to be altered as necessary. A call with s as a null pointer
causes these functions to return a non-zero value if encodings have state
dependency, and a zero otherwise. After the LC_CTYPE category is changed, the
shift state of these functions is indeterminate.

mblen

int mblen(const char * s, size_t n)

If s is not a null pointer, the mblen function determines the number of bytes
comprising the multibyte character pointed to by s. Except that the shift state of
the mbtowc function is not affected, it is equivalent to mbtowc((wchar_t *)0,
s, n).

Returns: If s is a null pointer, the mblen function returns a non-zero or zero value,
if multibyte character encodings, respectively do or do not have state-dependent
encodings. If s is not a null pointer, the mblen function either returns a 0 (if s
points to a null character), or returns the number of bytes that comprise the
multibyte character (if the next n of fewer bytes form a valid multibyte character),
or returns –1 (if they do not form a valid multibyte character).

mbtowc

int mbtowc(wchar_t * pwc, const char * s, size_t n)

If s is not a null pointer, the mbtowc function determines the number of bytes that
comprise the multibyte character pointed to by s. It then determines the code for
value of type wchar_t that corresponds to that multibyte character. (The value of
the code corresponding to the null character is zero). If the multibyte character is
valid and pwc is not a null pointer, the mbtowc function stores the code in the
object pointed to by pwc. At most n bytes of the array pointed to by s will be
examined.

Returns: If s is a null pointer, the mbtowc function returns a non-zero or zero
value, if multibyte character encodings, respectively do or do not have
state-dependent encodings. If s is not a null pointer, the mbtowc function either
189

stdlib.h
returns a 0 (if s points to a null character), or returns the number of bytes that
comprise the converted multibyte character (if the next n of fewer bytes form a
valid multibyte character), or returns –1 (if they do not form a valid multibyte
character).

wctomb

int wctomb(char * s, wchar_t wchar)

Determines the number of bytes need to represent the multibyte character
corresponding to the code whose value is wchar (including any change in shift
state). It stores the multibyte character representation in the array object pointed
to by s (if s is not a null pointer). At most MB_CUR_MAX characters are stored. If
the value of wchar is zero, the wctomb function is left in the initial shift state).

Returns: If s is a null pointer, the wctomb function returns a non-zero or zero
value, if multibyte character encodings, respectively do or do not have
state-dependent encodings. If s is not a null pointer, the wctomb function returns
a –1 if the value of wchar does not correspond to a valid multibyte character, or
returns the number of bytes that comprise the multibyte character corresponding
to the value of wchar.

Multibyte string functions

The behaviour of the multibyte string functions is affected by the LC_CTYPE
category of the current locale.

mbstowcs

size_t mbstowcs(wchar_t * pwcs, const char * s, size_t n)

Converts a sequence of multibyte characters that begins in the initial shift state
from the array pointed to by s into a sequence of corresponding codes and stores
not more than n codes into the array pointed to by pwcs. No multibyte character
that follow a null character (which is converted into a code with value zero) will be
examined or converted. Each multibyte character is converted as if by a call to the
mbtowc function. If an invalid multibyte character is found, mbstowcs returns
(size_t)-1. Otherwise, the mbstowcs function returns the number of array
elements modified, not including a terminating zero code, if any.

wcstombs

size_t wcstombs(char * s, const wchar_t * pwcs, size_t n)
190

The C library
Converts a sequence of codes that correspond to multibyte characters from the
array pointed to by pwcs into a sequence of multibyte characters that begins in the
initial shift state and stores these multibyte characters into the array pointed to by
s, stopping if a multibyte character would exceed the limit of n total bytes or if a
null character is stored. Each code is converted as if by a call to the wctomb
function, except that the shift state of the wctomb function is not affected. If a
code is encountered which does not correspond to any valid multibyte character,
the wcstombs function returns (size_t)-1. Otherwise, the wcstombs function
returns the number of bytes modified, not including a terminating null character, if
any.
191

string.h
string.h

string.h declares one type and several functions, and defines one macro useful
for manipulating character arrays and other objects treated as character arrays.
Various methods are used for determining the lengths of the arrays, but in all cases
a char * or void * argument points to the initial (lowest addresses) character
of the array. If an array is written beyond the end of an object, the behaviour is
undefined.

memcpy

void *memcpy(void * s1, const void * s2, size_t n)

Copies n characters from the object pointed to by s2 into the object pointed to by
s1. If copying takes place between objects that overlap, the behaviour is
undefined.

Returns: the value of s1.

memmove

void *memmove(void * s1, const void * s2, size_t n)

Copies n characters from the object pointed to by s2 into the object pointed to by
s1. Copying takes place as if the n characters from the object pointed to by s2 are
first copied into a temporary array of n characters that does not overlap the objects
pointed to by s1 and s2, and then the n characters from the temporary array are
copied into the object pointed to by s1.

Returns: the value of s1.

strcpy

char *strcpy(char * s1, const char * s2)

Copies the string pointed to by s2 (including the terminating null character) into
the array pointed to by s1. If copying takes place between objects that overlap, the
behaviour is undefined.

Returns: the value of s1.
192

The C library
strncpy

char *strncpy(char * s1, const char * s2, size_t n)

Copies not more than n characters (characters that follow a null character are not
copied) from the array pointed to by s2 into the array pointed to by s1. If copying
takes place between objects that overlap, the behaviour is undefined. If
terminating nul has not been copied in chars, no term nul is placed in s2.

Returns: the value of s1.

strcat

char *strcat(char * s1, const char * s2)

Appends a copy of the string pointed to by s2 (including the terminating null
character) to the end of the string pointed to by s1. The initial character of s2
overwrites the null character at the end of s1.

Returns: the value of s1.

strncat

char *strncat(char * s1, const char * s2, size_t n)

Appends not more than n characters (a null character and characters that follow it
are not appended) from the array pointed to by s2 to the end of the string pointed
to by s1. The initial character of s2 overwrites the null character at the end of s1.
A terminating null character is always appended to the result.

Returns: the value of s1.

The sign of a non-zero value returned by the comparison functions is determined
by the sign of the difference between the values of the first pair of characters (both
interpreted as unsigned char) that differ in the objects being compared.

memcmp

int memcmp(const void * s1, const void * s2, size_t n)

Compares the first n characters of the object pointed to by s1 to the first n
characters of the object pointed to by s2.

Returns: an integer greater than, equal to, or less than zero, depending on whether
the object pointed to by s1 is greater than, equal to, or less than the object
pointed to by s2.
193

string.h
strcmp

int strcmp(const char * s1, const char * s2)

Compares the string pointed to by s1 to the string pointed to by s2.

Returns: an integer greater than, equal to, or less than zero, depending on whether
the string pointed to by s1 is greater than, equal to, or less than the string pointed
to by s2.

strncmp

int strncmp(const char * s1, const char * s2, size_t n)

Compares not more than n characters (characters that follow a null character are
not compared) from the array pointed to by s1 to the array pointed to by s2.

Returns: an integer greater than, equal to, or less than zero, depending on whether
the string pointed to by s1 is greater than, equal to, or less than the string pointed
to by s2.

strcoll

int strcoll(const char * s1, const char * s2)

Compares the string pointed to by s1 to the string pointed to by s2, both
interpreted as appropriate to the LC_COLLATE category of the current locale.

Returns: an integer greater than, equal to, or less than zero, depending on whether
the string pointed to by s1 is greater than, equal to, or less than the string pointed
to by s2 when both are interpreted as appropriate to the current locale.

strxfrm

size_t strxfrm(char * s1, const char * s2, size_t n)

Transforms the string pointed to by s2 and places the resulting string into the
array pointed to by s1. The transformation function is such that if the strcmp
function is applied to two transformed strings, it returns a value greater than,
equal to or less than zero, corresponding to the result of the strcoll function
applied to the same two original strings. No more than n characters are placed into
the resulting array pointed to by s1, including the terminating null character. If n is
zero, s1 is permitted to be a null pointer. If copying takes place between objects
that overlap, the behaviour is undefined.
194

The C library
Returns: The length of the transformed string is returned (not including the
terminating null character). If the value returned is n or more, the contents of the
array pointed to by s1 are indeterminate.

memchr

void *memchr(const void * s, int c, size_t n)

Locates the first occurrence of c (converted to an unsigned char) in the initial n
characters (each interpreted as unsigned char) of the object pointed to by s.

Returns: a pointer to the located character, or a null pointer if the character does
not occur in the object.

strchr

char *strchr(const char * s, int c)

Locates the first occurrence of c (converted to a char) in the string pointed to by s
(including the terminating null character). The BSD UNIX name for this function is
index().

Returns: a pointer to the located character, or a null pointer if the character does
not occur in the string.

strcspn

size_t strcspn(const char * s1, const char * s2)

Computes the length of the initial segment of the string pointed to by s1 which
consists entirely of characters not from the string pointed to by s2. The
terminating null character is not considered part of s2.

Returns: the length of the segment.

strpbrk

char *strpbrk(const char * s1, const char * s2)

Locates the first occurrence in the string pointed to by s1 of any character from the
string pointed to by s2.

Returns: returns a pointer to the character, or a null pointer if no character form s2
occurs in s1.
195

string.h
strrchr

char *strrchr(const char * s, int c)

Locates the last occurrence of c (converted to a char) in the string pointed to by s.
The terminating null character is considered part of the string. The BSD UNIX name
for this function is rindex().

Returns: returns a pointer to the character, or a null pointer if c does not occur in
the string.

strspn

size_t strspn(const char * s1, const char * s2)

Computes the length of the initial segment of the string pointed to by s1 which
consists entirely of characters from the string pointed to by s2.

Returns: the length of the segment.

strstr

char *strstr(const char * s1, const char * s2)

Locates the first occurrence in the string pointed to by s1 of the sequence of
characters (excluding the terminating null character) in the string pointed to by s2.

Returns: a pointer to the located string, or a null pointer if the string is not found.

strtok

char *strtok(char * s1, const char * s2)

A sequence of calls to the strtok function breaks the string pointed to by s1 into
a sequence of tokens, each of which is delimited by a character from the string
pointed to by s2. The first call in the sequence has s1 as its first argument, and is
followed by calls with a null pointer as their first argument. The separator string
pointed to by s2 may be different from call to call. The first call in the sequence
searches for the first character that is not contained in the current separator string
s2. If no such character is found, then there are no tokens in s1 and the strtok
function returns a null pointer. If such a character is found, it is the start of the first
token. The strtok function then searches from there for a character that is
contained in the current separator string. If no such character is found, the current
token extends to the end of the string pointed to by s1, and subsequent searches
for a token will fail. If such a character is found, it is overwritten by a null character,
which terminates the current token. The strtok function saves a pointer to the
196

The C library
following character, from which the next search for a token will start. Each
subsequent call, with a null pointer as the value for the first argument, starts
searching from the saved pointer and behaves as described above.

Returns: pointer to the first character of a token, or a null pointer if there is no
token.

memset

void *memset(void * s, int c, size_t n)

Copies the value of c (converted to an unsigned char) into each of the first n
characters of the object pointed to by s.

Returns: the value of s.

strerror

char *strerror(int errnum)

Maps the error number in errnum to an error message string.

Returns: a pointer to the string, the contents of which are implementation-defined.
Under RISC OS the strings for the given errnums are as follows:

● 0 No error (errno = 0)

● EDOM EDOM – function argument out of range

● ERANGE ERANGE – function result not representable

● ESIGNUM ESIGNUM – illegal signal number to signal() or
raise()

● EILSEQ EILSEQ – character encoding error

● EOVERFLOW EOVERFLOW – too large for data structure

● EFBIG EFBIG – data written to file lost due to exceeding file
size limit

● others Error code (errno) has no associated message).

The array pointed to may not be modified by the program, but may be overwritten
by a subsequent call to the strerror function.

strlen

size_t strlen(const char * s)

Computes the length of the string pointed to by s.
197

string.h
Returns: the number of characters that precede the terminating null character.
198

The C library
stdnoreturn.h

The stdnoreturn.h header file is part of the C18 extensions to the C language,
providing support for functions that are known not to return.

It defines the macro noreturn only.
199

tgmath.h
tgmath.h

The intent of the tgmath.h library header is to provide the core set of maths
functions which will automatically select the appropriate implementation
depending on the type of the variables passed to the function. When using
tgmath.h header you should not include math.h or complex.h in your
program, this will be done for you.

The rules for determining which implementation to invoke are as follows:

● First, if any argument for generic parameters has type long double, the type
determined is long double

● Otherwise, if any argument for generic parameters has type double or is of
integer type, the type determined is double

● Otherwise, the type determined is float.

For example:

#include <tgmath.h>
coordinate_t value = 42.0; /* Defined as a float */
result = sqrt(value);

is equivalent to

#include <math.h>
coordinate_t value = 42.0;
result = sqrtf(value);

However, if the program subsequently decides to upgrade all its coordinates to use
doubles, a simple recompilation will cause tgmath.h to swap the function calls
over.

The functions implemented in this manner are:

acos asin atan acosh asinh
atanh cos sin tan cosh
sinh tanh exp log pow
sqrt fabs atan2 cbrt ceil
copysign erf erfc exp2 expm1
fdim floor fma fmax fmin
fmod frexp hypot ilogb ldexp
lgamma llrint llround log10 log1p
log2 logb lrint lround nearbyint
nextafter nexttoward remainder remquo rint
round scalbn scalbln tgamma trunc
carg cimag conj cproj creal
200

The C library
time.h

time.h declares two macros, four types and several functions for manipulating
time. Many functions deal with a calendar time that represents the current date
(according to the Gregorian calendar) and time. Some functions deal with local
time, which is the calendar time expressed for some specific time zone, and with
Daylight Saving Time, which is a temporary change in the algorithm for
determining local time.

struct tm

struct tm holds the components of a calendar time called the broken-down
time. The value of tm_isdst is positive if Daylight Saving Time is in effect, zero if
Daylight Saving Time is not in effect, and negative if the information is not
available.

struct tm {
 int tm_sec; /* seconds after the minute, 0 to 60
 (0-60 allows for the occasional leap
 second) */
 int tm_min /* minutes after the hour, 0 to 59 */
 int tm_hour /* hours since midnight, 0 to 23 */
 int tm_mday /* day of the month, 0 to 31 */
 int tm_mon /* months since January, 0 to 11 */
 int tm_year /* years since 1900 */
 int tm_wday /* days since Sunday, 0 to 6 */
 int tm_yday /* days since January 1, 0 to 365 */
 int tm_isdst /* Daylight Saving Time flag */
};

clock

clock_t clock(void)

Determines the processor time used.

Returns: the implementation’s best approximation to the processor time used by
the program since program invocation. The time in seconds is the value returned,
divided by the value of the macro CLOCKS_PER_SEC. The value (clock_t)-1
is returned if the processor time used is not available. In the desktop, clock()
returns all processor time, not just that of the program.
201

time.h
difftime

double difftime(time_t time1, time_t time0)

Computes the difference between two calendar times: time1 - time0. Returns:
the difference expressed in seconds as a double.

mktime

time_t mktime(struct tm * timeptr)

Converts the broken-down time, expressed as local time, in the structure pointed
to by timeptr into a calendar time value with the same encoding as that of the
values returned by the time function. The original values of the tm_wday and
tm_yday components of the structure are ignored, and the original values of the
other components are not restricted to the ranges indicated above. On successful
completion, the values of the tm_wday and tm_yday structure components are
set appropriately, and the other components are set to represent the specified
calendar time, but with their values forced to the ranges indicated above; the final
value of tm_mday is not set until tm_mon and tm_year are determined.

Returns: the specified calendar time encoded as a value of type time_t. If the
calendar time cannot be represented, the function returns the value (time_t)-1.

time

time_t time(time_t * timer)

Determines the current calendar time. The encoding of the value is unspecified.

Returns: the implementation’s best approximation to the current calendar time.
The value (time_t)-1 is returned if the calendar time is not available. If timer
is not a null pointer, the return value is also assigned to the object it points to.

asctime

char *asctime(const struct tm * timeptr)

Converts the broken-down time in the structure pointed to by timeptr into a
string in the style Sun Sep 16 01:03:52 1973\n\0.

Returns: a pointer to the string containing the date and time.
202

The C library
ctime

char *ctime(const time_t * timer)

Converts the calendar time pointed to by timer to local time in the form of a
string. It is equivalent to asctime(localtime(timer)).

Returns: the pointer returned by the asctime function with that broken-down
time as argument.

gmtime

struct tm *gmtime(const time_t * timer)

Converts the calendar time pointed to by timer into a broken-down time,
expressed as Greenwich Mean Time (GMT).

Returns: a pointer to that object or a null pointer if GMT is not available.

localtime

struct tm *localtime(const time_t * timer)

Converts the calendar time pointed to by timer into a broken-down time,
expressed a local time.

Returns: a pointer to that object.

strftime

size_t strftime(char * s, size_t maxsize, const char *
 format, const struct tm * timeptr)

Places characters into the array pointed to by s as controlled by the string pointed
to by format. The format string consists of zero or more directives and ordinary
characters. A directive consists of a % character followed by a character that
determines the directive’s behaviour. All ordinary characters (including the
terminating null character) are copied unchanged into the array. No more than
maxsize characters are placed into the array. Each directive is replaced by
appropriate characters as described in the following list. The appropriate
characters are determined by the LC_TIME category of the current locale and by
the values contained in the structure pointed to by timeptr.
203

time.h
Directive Replaced by

%a the locale’s abbreviated weekday name
%A the locale’s full weekday name
%b the locale’s abbreviated month name
%B the locale’s full month name
%c the locale’s appropriate date and time representation
%C the century as a decimal number (00-99)
%d the day of the month as a decimal number (01–31)
%D the expansion of %m/%d/%y
%e as for %d, except the leading zero becomes a leading space
%F the expansion of %Y-%m-%d which is the ISO 8601 standard form
%g the last two digits of the ISO 8601 week based year as a decimal

number (00-99)
%G the ISO 8601 week based year as a decimal number (eg 2015)
%h as for %b
%H the hour (24-hour clock) as a decimal number (00–23)
%I the hour (12-hour clock) as a decimal number (01–12)
%j the day of the year as a decimal number (001–366)
%m the month as a decimal number (01–12)
%M the minute as a decimal number (00–61)
%p the locale’s equivalent of either AM or PM designation

associated with a 12-hour clock
%r the locale’s 12-hour clock time
%R the expansion of %H:%M
%S the second as a decimal number (00–61)
%t a tab
%T the expansion of %H:%M:%S (the ISO 8601 time format)
%u the ISO 8601 weekday as a decimal number (1-7), where Monday

is 1
%U the week number of the year (Sunday as the first day of

week 1) as a decimal number (00–53)
%w the weekday as a decimal number (0(Sunday) –6)
%W the week number of the year (Monday as the first day of

week 1) as a decimal number (00–53)
%x the locale’s appropriate date representation
%X the locale’s appropriate time representation
%y the year without century as a decimal number (00–99)
%Y the year with century as a decimal number
%z the offset from UTC in the ISO 8601 format (eg -0430), or by no

characters if no time zone is determinable
%Z the time zone name or abbreviation, or by no character

if no time zone is determinable
%% a % symbol.
204

The C library
The optional E and O modifiers to change the above directives to locale alternative
representations are ignored. If a directive is not one of the above, the behaviour is
undefined.

Returns: If the total number of resulting characters including the terminating null
character is not more than maxsize, the strftime function returns the number
of characters placed into the array pointed to by s not including the terminating
null character. Otherwise, zero is returned and the contents of the array are
indeterminate.

timespec_get

int timespec_get(struct timespec * ts, int base)

Sets the interval pointed to by ts to hold the current calendar time based on the
specified time base. If base is TIME_UTC this is the number of seconds and
nanoseconds (rounded to the resolution of the system clock) since an
implementation defined epoch. The epoch used by RISC OS is 1st January 1970.

Returns: if successful it returns the non-zero value base, otherwise it returns 0.
205

uchar.h
uchar.h

The extended unicode character handling utilities are part of the C18 language
extensions which are not currently implemented as detailed in the section C18
non-compliances on page 118. The header file is provided for compatibility with
source code ported from other platforms, but will cause a link time error if any of
its functions are used.
206

The C library
wchar.h

The extended multibyte wide character handling utilities are part of the C99
language extensions which are not currently implemented as detailed in the
section C99 non-compliances on page 110. The header file is provided for
compatibility with source code ported from other platforms, but will cause a link
time error if any of its functions are used.
207

wctype.h
wctype.h

The extended multibyte wide character classification utilities are part of the C99
language extensions which are not currently implemented as detailed in the
section C99 non-compliances on page 110. The header file is provided for
compatibility with source code ported from other platforms, but will cause a link
time error if any of its functions are used.
208

7 The ANSI library

he ANSI library is a stand-alone version of the shared C library that contains a

few extra functions useful in debugging and profiling your code. You should

use it for development only, using the shared C library in any final product.

This chapter describes the extra functions provided by the ANSI library. For details
of the other functions, see the chapter The C library on page 135.

T

209

Extra functions
Extra functions

__heap_checking_on_all_allocates
__heap_checking_on_all_deallocates

void __heap_checking_on_all_allocates (int on);
void __heap_checking_on_all_deallocates (int on);

Calling these functions with a non-zero argument causes malloc() and free()
respectively to check the consistency of the C heap on every call, rather than only
when the heap is coalesced. It is especially useful for tracking down exactly where
memory corruption is occurring. This feature is disabled by passing an argument of
zero.

_mapstore
_fmapstore

void _mapstore (void);
void _fmapstore (char *filename);

These functions write profiling information for a program to stderr or filename
respectively, if the program has been compiled with profiling enabled.
210

8 The Event library

he purpose of the ‘event’ library is to allow the client to more easily dispatch

Toolbox and Wimp events within Toolbox based applications.

Introduction

A typical client will register some event handlers, and then enter a poll loop, with
events being dispatched for it to its event handler functions by the event library as
described below.

When the client has called toolbox_initialise, it should call the function
event_initialise (see page 213), passing a pointer to the id block (see the User
Interface Toolbox manual for a description of this) which was passed to
toolbox_initialise; this pointer will then be passed to any event handler
functions which the client subsequently registers.

The client application enters a poll loop using a call to event_poll (see
page 214), passing a pointer to a poll block, just as for the SWI Wimp_Poll (which
is, in fact, called on the client’s behalf). If the client wishes to cause a call to
Wimp_PollIdle, then it should call event_poll_idle instead (see page 214).
The event block is the one which will be filled in by SWI Wimp_Poll. When the
Wimp is polled, the mask passed in R0 is determined by the last call made by the
client to the function event_set_mask (see page 213); the default mask used is
to just mask out Null events.

Registering and deregistering event handlers

The event library also allows the client to register functions which will be called
back for particular combinations of Toolbox or Wimp events, either on all objects
or on a given object. This is done for Toolbox events by calling the function
event_register_toolbox_handler (see page 215), and for Wimp events by
calling the function event_register_wimp_handler (see page 215).

These register a handler function which will be called back by the event library
following a call to event_poll (or event_poll_idle), if its given conditions
are met. The handler function will be passed a client-defined handle, a pointer to
the poll block passed to event_poll, and a pointer to the client’s id block (as
passed to event_initialise).

T

211

Registering and deregistering message handlers
When event_poll is called and an event has arrived, the event library will try to
find a matching handler function in the following priority order:

● a handler registered for the object to which this event was delivered

● a handler registered for this event (for all objects).

All handler functions which are registered for the given event are called using the
order given above, until the list is exhausted or one of the handlers returns
non-zero, indicating that it has ‘claimed’ the event. If more than one function is
registered at the same priority level as defined above, then they are called in the
reverse order to that in which they were registered.

In order to deregister event handlers, the client calls
event_deregister_toolbox_handler (see page 216) and
event_deregister_wimp_handler (see page 216) with
the same parameters as when the handler was registered.

Registering and deregistering message handlers

Wimp messages are delivered on a per-task basis, and not to a particular object
(i.e. the id block is not filled in with an object id). A client can register a handler for
Wimp messages by calling the function event_register_message_handler
(see page 216).

If more than one handler is registered for a particular Wimp message, then they are
called in the reverse order to that in which they were registered.

In order to deregister message handlers, the client calls
event_deregister_message_handler (see page 216) with
the same parameters as when the handler was registered.

Quitting applications

Event and message handlers are both held in application space. Normal
application tasks therefore do not need to remove them on quitting, nor need they
deregister them, but module tasks do however need to call event_finalise
(see page 213) in order to reinitialise the associated data held in RMA.

Programmer interface

The rest of this chapter lists the C function calls that are used to control the event
library. See the chapter The Wimp library on page 221 for a description of the Wimp
type definitions in the Wimp SWI veneer library.
212

The Event library
Initialisation

event_initialise

extern _kernel_oserror *event_initialise (IdBlock *b);

The IdBlock that was given to toolbox_initialise should be passed to
event_initialise; this is then passed to Toolbox and Wimp handlers when
they are called.

event_finalise

extern _kernel_oserror *event_finalise (void);

This function removes all event handlers and reinitialises static data used by the
library. Module tasks must call this function when existing to ensure that pointers
in the RMA do not hold invalid values when re-entering the Desktop.

event_set_mask

extern _kernel_oserror *event_set_mask
(unsigned int mask);

mask is an integer defining what events are to be returned. This has the same
meaning as the Wimp_Poll mask described in the RISC OS Programmer’s Reference
Manual. By default, this just masks out Null events.

event_get_mask

extern _kernel_oserror *event_get_mask
(unsigned int *mask);

mask should be the address of an integer where the current mask is to be stored.
213

Polling
Polling

event_poll

extern _kernel_oserror *event_poll (int *event_code,
WimpPollBlock *poll_block,
void *poll_word);

This function makes calls to the SWI Wimp_Poll. The poll_block should be
allocated before calling this function and its address passed in. The poll_word is
only used by the Wimp if the mask is set accordingly (see the RISC OS Programmer’s
Reference Manual) by event_set_mask (see page 213). All arguments are optional
and may be set to zero if the client application does not want to use an event code,
poll block or poll word.

event_poll_idle

extern _kernel_oserror *event_poll_idle (int *event_code,
WimpPollBlock *poll_block,
unsigned int earliest,
void *poll_word);

This function makes calls to the SWI Wimp_PollIdle. The poll_block should be
allocated before calling this function and its address passed in. The poll_word is
optional (i.e. the pointer may be set to zero), and is only used by the Wimp if the
mask is set accordingly (see the RISC OS Programmer’s Reference Manual) by
event_set_mask (see page 213). Like the SWI (see the RISC OS Programmer’s
Reference Manual), control will not return to the client before the earliest time,
unless an event other than a Null has occurred.
214

The Event library
Registering handlers

These functions allow registering handlers for Wimp events, Toolbox events and
Wimp messages. If you wish to register for all events or all objects a value of –1
should be used in place of the event_code or ObjectId.

If there is not enough memory to register the handler, an error will be raised.

event_register_wimp_handler

_kernel_oserror *event_register_wimp_handler
(ObjectId object_id,
int event_code,
WimpEventHandler *handler,
void *handle);

handler is the function that should be called when the given Wimp event code
occurs on the object (e.g. a redraw event on a window). The handle is a value
which will be passed to the handler function, and thus may be used to associate
a data structure with the given object.

event_register_toolbox_handler

_kernel_oserror *event_register_toolbox_handler
(ObjectId object_id,
int event_code,
ToolboxEventHandler *handler,
void *handle);

handler is the function that should be called when the given Toolbox event code
occurs on the object (e.g. a DCS_Discard event on a DCS object). The handle is a
value which will be passed to the handler function, and thus may be used to
associate a data structure with the given object.
215

Registering handlers
event_register_message_handler

_kernel_oserror *event_register_message_handler
(int msg_no,
WimpMessageHandler *handler,
void *handle);

handler is the function that should be called when the given Wimp message is
received by the task (e.g. Wimp_MQuit). The handle is a value which will be
passed to the handler function, and thus may be used to associate a data
structure with the given message.

To deregister a handler, the appropriate function below should be used. Note that
the parameters must exactly match those passed to the registration function.

An error will be raised if an attempt is made to deregister a handler that was not
previously registered.

event_deregister_wimp_handler

_kernel_oserror *event_deregister_wimp_handler
(ObjectId object_id,
int event_code,
WimpEventHandler *handler,
void *handle);

Deregisters a previously registered Wimp event handler.

event_deregister_toolbox_handler

_kernel_oserror *event_deregister_toolbox_handler
(ObjectId object_id,
int event_code,
ToolboxEventHandler *handler,
void *handle);

Deregisters a previously registered Toolbox event handler.

event_deregister_message_handler

_kernel_oserror *event_deregister_message_handler (int
msg_no, WimpMessageHandler *handler, void *handle);

Deregisters a previously registered Wimp message handler.
216

The Event library
Handlers

When a client calls event_poll, EventLib issues the SWI Wimp_Poll. If the Wimp
returns an event code and poll block that match one of the clients ‘interests’ then a
handler will be called.

The handlers that are registered and deregistered above have the following calling
parameters:

● The event_code passed in is the actual event that lead to the handler being
called.

● The IdBlock will be that passed to event_initialise, and is updated by
the Toolbox to identify which object the event has occurred on.

● The handle is the value that was passed through on registration, and is not
interpreted by EventLib or the Toolbox.

A handler should return zero if it has not handled the event, so that it may be
passed on to other handlers which have been registered for a similar interest.
Returning non-zero will ‘claim’ the event, and event_poll will return.

WimpEventHandler

typedef int (WimpEventHandler) (int event_code,
WimpPollBlock *event,
IdBlock *id_block,
void *handle);

ToolboxEventHandler

typedef int (ToolboxEventHandler) (int event_code,
ToolboxEvent *event,
IdBlock *id_block,
void *handle);

WimpMessageHandler

typedef int (WimpMessageHandler) (WimpMessage *message,
void *handle);
217

Example
Example

The following is a simple example of how EventLib might be used. A more
complete example covering Wimp and Toolbox events can be found in the User
Interface Toolbox manual.

/* * Minimal Toolbox application, using the event veneers library. */

#include <stdlib.h>
#include "wimp.h"
#include "toolbox.h"
#include "event.h"

#define WimpVersion 310

static WimpPollBlock poll_block;
static MessagesFD messages;
static IdBlock id_block;

static int quit=0;

int quit_handler (WimpMessage *message, void *handle);
{

quit =1;
return 1; /* claim the event */

}

int main()
{

int event_code;

/*
 * register ourselves with the Toolbox.
 */

toolbox_initialise (0, WimpVersion, 0, 0, "<Test$Dir>",
 &messages, &id_block, 0, 0, 0);

/*
 * initialise the event library.
 */

event_initialise (&id_block);

/*
 * register handlers
 */

event_register_message_handler (Wimp_MQuit, quit_handler, 0);
218

The Event library
/*
 * poll loop
 */

while (!quit)
{

event_poll (&event_code, &poll_block, 0);
}

exit (EXIT_SUCCESS);
}

219

220

9 The Wimp library

impLib provides a set of C veneers onto the Wimp (or Window Manager) SWI

interface. For a description of the exact effect of a particular call, you should

see the chapter The Window Manager at the start of Volume 3 of the RISC OS
Programmer’s Reference Manual.

The section below lists in alphabetical order the functions provided by WimpLib.
The functions’ names are derived directly from the SWIs’ names: for example, the
veneer to call Wimp_CreateWindow is wimp_create_window.

WimpLib does not provide access to every Wimp SWI: for example, the Filter
related SWIs and Wimp_SetWatchDogState are omitted. Such SWIs still have an
entry below under their expected function name, just so you can rapidly determine
they are not supported. Although functions are provided for adding and removing
Wimp messages, you must not use these in Toolbox applications.

Note that when a value is returned as a parameter (e.g. an integer value is returned
by function (int input, int *output)), the pointer to the return value
may be set to zero rather than provide a dummy variable.

W

221

Programmer interface
Programmer interface

wimp_add_messages

_kernel_oserror *wimp_add_messages (int *list /* R0 in */);

This calls the SWI Wimp_AddMessages. You must not use this call in Toolbox
applications.

wimp_base_of_sprites

_kernel_oserror *wimp_base_of_sprites (void **rom, /* R0 out */
void **ram /* R1 out */);

This calls the SWI Wimp_BaseOfSprites.

wimp_block_copy

_kernel_oserror *wimp_block_copy (int handle, /* R0 in */
int sxmin, /* R1 in */
int symin, /* R2 in */
int sxmax, /* R3 in */
int symax, /* R4 in */
int dxmin, /* R5 in */
int dymin /* R6 in */);

This calls the SWI Wimp_BlockCopy.

wimp_claim_free_memory

You might expect a function of this name to be provided to call
Wimp_ClaimFreeMemory. However, such a function is not implemented by
WimpLib.

wimp_close_down

_kernel_oserror *wimp_close_down (int th /* R0 in */);

This sets up R1 to be &4B534154 (‘TASK’), and then calls the SWI
Wimp_CloseDown.

wimp_close_template

_kernel_oserror *wimp_close_template (void);

This calls the SWI Wimp_CloseTemplate.
222

The Wimp library
wimp_close_window

_kernel_oserror *wimp_close_window (int window_handle /* R1 in */);

This calls the SWI Wimp_CloseWindow.

wimp_command_window

_kernel_oserror *wimp_command_window (int type /* R0 in */);

This calls the SWI Wimp_CommandWindow.

wimp_create_icon

_kernel_oserror *wimp_create_icon (int priority, /* R0 in */
WimpCreateIconBlock *defn, /* R1 in */
int *handle /* R0 out */);

This calls the SWI Wimp_CreateIcon.

wimp_create_menu, CloseMenu

#define CloseMenu ((void *) -1)

_kernel_oserror *wimp_create_menu (void * handle, /* R1 in */
int x, /* R2 in */
int y /* R3 in */);

This calls the SWI Wimp_CreateMenu.

wimp_create_submenu

_kernel_oserror *wimp_create_submenu (void * handle, /* R1 in */
int x, /* R2 in */
int y /* R3 in */);

This calls the SWI Wimp_CreateSubmenu.

wimp_create_window

_kernel_oserror *wimp_create_window (WimpWindow *defn, /* R1 in */
int *handle /* R0 out */);

This calls the SWI Wimp_CreateWindow.
223

Programmer interface
wimp_decode_menu

_kernel_oserror *wimp_decode_menu (void *data, /* R1 in */
int *selections, /* R2 in */
char *buffer /* R3 in */);

This calls the SWI Wimp_DecodeMenu.

wimp_delete_icon

_kernel_oserror *wimp_delete_icon (WimpDeleteIconBlock *block
/* R1 in */);

This calls the SWI Wimp_DeleteIcon.

wimp_delete_window

_kernel_oserror *wimp_delete_window (WimpDeleteWindowBlock *block
/* R1 in */);

This calls the SWI Wimp_DeleteWindow.

wimp_drag_box, CancelDrag

#define CancelDrag 0

_kernel_oserror *wimp_drag_box (WimpDragBox *block
/* R1 in */);

This calls the SWI Wimp_DragBox.

wimp_extend

You might expect a function of this name to be provided to call Wimp_Extend.
However, such a function is not implemented by WimpLib.

wimp_force_redraw

_kernel_oserror *wimp_force_redraw (int window_handle, /* R0 in */
int xmin, /* R1 in */
int ymin, /* R2 in */
int xmax, /* R3 in */
int ymax /* R4 in */);

This calls the SWI Wimp_ForceRedraw.
224

The Wimp library
wimp_get_caret_position

_kernel_oserror *wimp_get_caret_position(WimpGetCaretPositionBlock *block
/* R1 in */);

This calls the SWI Wimp_GetCaretPosition.

wimp_get_icon_state

_kernel_oserror *wimp_get_icon_state (WimpGetIconStateBlock *block
/* R1 in */);

This calls the SWI Wimp_GetIconState.

wimp_get_menu_state

_kernel_oserror *wimp_get_menu_state (int report, /* R0 in */
int *state, /* R1 in */
int window, /* R2 in */
int icon /* R3 in */);

This calls the SWI Wimp_GetMenuState.

wimp_get_pointer_info

_kernel_oserror *wimp_get_pointer_info (WimpGetPointerInfoBlock *block
/* R1 in */);

This calls the SWI Wimp_GetPointerInfo.

wimp_get_rectangle

_kernel_oserror *wimp_get_rectangle (WimpRedrawWindowBlock *block,
/* R1 in */

int *more /* R0 out */);

This calls the SWI Wimp_GetRectangle.

wimp_get_window_info

_kernel_oserror *wimp_get_window_info (WimpGetWindowInfoBlock *block
/* R1 in */);

This calls the SWI Wimp_GetWindowInfo.
225

Programmer interface
wimp_get_window_outline

_kernel_oserror *wimp_get_window_outline(WimpGetWindowOutlineBlock *block
/* R1 in */);

This calls the SWI Wimp_GetWindowOutline.

wimp_get_window_state

_kernel_oserror *wimp_get_window_state (WimpGetWindowStateBlock *state
/* R1 in */);

This calls the SWI Wimp_GetWindowState.

wimp_initialise

_kernel_oserror *wimp_initialise (int version, /* R0 in */
char *name, /* R2 in */
int *messages, /* R3 in */
int *cversion, /* R0 out */
int *task /* R1 out */);

This sets up R1 to be &4B534154 (‘TASK’), and then calls the SWI Wimp_Initialise.

wimp_load_template

_kernel_oserror *wimp_load_template (_kernel_swi_regs *regs /*R1-6 in*/);

This calls the SWI Wimp_LoadTemplate.

wimp_open_template

_kernel_oserror *wimp_open_template (char *name /* R1 in */);

This calls the SWI Wimp_OpenTemplate.

wimp_open_window

_kernel_oserror *wimp_open_window (WimpOpenWindowBlock *show
/* R1 in */);

This calls the SWI Wimp_OpenWindow.

wimp_plot_icon

_kernel_oserror *wimp_plot_icon (WimpPlotIconBlock *block
/* R1 in */);

This calls the SWI Wimp_PlotIcon.
226

The Wimp library
wimp_poll

_kernel_oserror *wimp_poll (int mask, /* R0 in */
WimpPollBlock *block, /* R1 in */
int *pollword, /* R2 in */
int *event_code /* R0 out */);

This calls the SWI Wimp_Poll.

wimp_poll_idle

_kernel_oserror *wimp_pollidle (int mask, /* R0 in */
WimpPollBlock *block, /* R1 in */
int time, /* R2 in */
int *pollword, /* R3 in */
int *event_code /* R0 out */);

This calls the SWI Wimp_PollIdle.

wimp_process_key

_kernel_oserror *wimp_process_key (int keycode /* R0 in */);

This calls the SWI Wimp_ProcessKey.

wimp_read_palette

_kernel_oserror *wimp_read_palette (Palette *palette /* R1 in */);

This calls the SWI Wimp_ReadPalette.

wimp_read_pix_trans

You might expect a function of this name to be provided to call
Wimp_ReadPixTrans. However, such a function is not implemented by WimpLib.

wimp_read_sys_info, WimpSysInfo

typedef struct { int r0; int r1; } WimpSysInfo;

_kernel_oserror *wimp_read_sys_info (int reason, /* R0 in */
WimpSysInfo *results /* R0 out */);

This calls the SWI Wimp_ReadSysInfo.
227

Programmer interface
wimp_redraw_window

_kernel_oserror *wimp_redraw_window (WimpRedrawWindowBlock *block,
/* R1 in */

int *more /* R0 out */);

This calls the SWI Wimp_RedrawWindow.

wimp_register_filter

You might expect a function of this name to be provided to call
Wimp_RegisterFilter. However, such a function is not implemented by WimpLib.

wimp_remove_messages

_kernel_oserror *wimp_remove_messages (int *list /* R0 in */);

This calls the SWI Wimp_RemoveMessages. You must not use this call in Toolbox
applications.

wimp_report_error

int wimp_report_error (_kernel_oserror *er, /* R0 in */
int flags, /* R1 in */
char *name, /* R2 in */
char *sprite, /* R3 in */
void *area, /* R4 in */
char *buttons /* R5 in */);

This calls the SWI Wimp_ReportError.

wimp_resize_icon

_kernel_oserror *wimp_resize_icon (int window, /* R0 in */
int icon, /* R1 in */
int xmin, /* R2 in */
int ymin, /* R3 in */
int xmax, /* R4 in */
int ymax /* R5 in */);

This calls the SWI Wimp_ResizeIcon.
228

The Wimp library
wimp_send_message

_kernel_oserror *wimp_send_message (int code, /* R0 in */
void *block, /* R1 in */
int handle, /* R2 in */
int icon, /* R3 in */
int *th /* R2 out */);

This calls the SWI Wimp_SendMessage.

wimp_set_caret_position

_kernel_oserror *wimp_set_caret_position(int window_handle, /* R0 in */
int icon_handle, /* R1 in */
int xoffset, /* R2 in */
int yoffset, /* R3 in */
int height, /* R4 in */
int index /* R5 in */);

This calls the SWI Wimp_SetCaretPosition.

wimp_set_colour, Wimp_BackgroundColour

#define Wimp_BackgroundColour (128)

_kernel_oserror *wimp_set_colour (int colour /* R0 in */);

This calls the SWI Wimp_SetColour.

wimp_set_colour_mapping

_kernel_oserror *wimp_set_colour_mapping(int which_palette, /* R1 in */
int *bpp1, /* R2 in */
int *bpp2, /* R3 in */
int *bpp4 /* R4 in */);

This calls sets R5, R6 and R7 to zero and then calls the SWI
Wimp_SetColourMapping.

wimp_set_extent

_kernel_oserror *wimp_set_extent (int window_handle, /* R0 in */
BBox *area /* R1 in */);

This calls the SWI Wimp_SetExtent.
229

Programmer interface
wimp_set_font_colours

_kernel_oserror *wimp_set_font_colours (int fore /* R1 in */
int back /* R2 in */);

This calls the SWI Wimp_SetFontColours.

wimp_set_icon_state

_kernel_oserror *wimp_set_icon_state (WimpSetIconStateBlock *block)
/* R1 in */;

This calls the SWI Wimp_SetIconState.

wimp_set_mode

_kernel_oserror *wimp_set_mode (int mode /* R0 in */);

This calls the SWI Wimp_SetMode.

wimp_set_palette, Palette

typedef struct { unsigned int colours[16];
unsigned int border;
unsigned int pointer1;
unsigned int pointer2;
unsigned int pointer3; } Palette;

_kernel_oserror *wimp_set_palette (Palette *palette /* R1 in */);

This calls the SWI Wimp_SetPalette.

wimp_set_pointer_shape

_kernel_oserror *wimp_set_pointer_shape (int shape, /* R0 in */
void *data, /* R1 in */
int width, /* R2 in */
int height, /* R3 in */
int activex, /* R4 in */
int activey /* R5 in */);

This calls the SWI Wimp_SetPointerShape.

wimp_set_watchdog_state

You might expect a function of this name to be provided to call
Wimp_SetWatchdogState. However, such a function is not implemented by
WimpLib.
230

The Wimp library
wimp_slot_size

_kernel_oserror *wimp_slot_size (int current, /* R0 in */
int next, /* R1 in */
int *current_out, /* R0 out */
int *next_out, /* R1 out */
int *free /* R2 out */);

This calls the SWI Wimp_SlotSize.

wimp_sprite_op, SpriteParams

typedef struct {int r3; int r4; int r5; int r6; int r7;} SpriteParams;

_kernel_oserror *wimp_sprite_op (int code, /* R0 in */
char *name, /* R2 in */
SpriteParams *p /* R3… in */);

This calls the SWI Wimp_SpriteOp.

wimp_start_task

_kernel_oserror *wimp_start_task (char *cl, /* R0 in */
int *handle /* R0 out */);

This calls the SWI Wimp_StartTask.

wimp_text_colour

_kernel_oserror *wimp_text_colour (int colour /* R0 in */);

This calls the SWI Wimp_TextColour.

wimp_text_op

_kernel_oserror *wimp_text_op (_kernel_swi_regs *regs /* R0… in */);

This calls the SWI Wimp_TextOp.

wimp_transfer_block

_kernel_oserror *wimp_transfer_block (int sh, /* R0 in */
void *sbuf, /* R1 in */
int dh, /* R2 in */
void *dbuf, /* R3 in */
int size /* R4 in */);

This calls the SWI Wimp_TransferBlock.
231

Programmer interface
wimp_update_window

_kernel_oserror *wimp_update_window (WimpRedrawWindowBlock *block,
/* R1 in */

int *more /* R0 out */);

This calls the SWI Wimp_UpdateWindow.

wimp_which_icon

_kernel_oserror *wimp_which_icon (int window_handle, /* R0 in */
int *icons, /* R1 in */
unsigned int mask, /* R2 in */
unsigned int match /* R3 in */);

This calls the SWI Wimp_WhichIcon.
232

10 The Toolbox library

he Toolbox library provides a set of C veneers onto the Toolbox SWIs. It is

described in the User Interface Toolbox manual. For full details of a particular

veneer, you should see the documentation of the corresponding SWI call.
T

233

234

11 The Render library

he Render library provides a set of C veneers onto the DrawFile SWIs, used to

render Draw files. It is described in the chapter DrawFile of the User Interface

Toolbox manual. For full details of a particular veneer, you should see the
documentation of the corresponding SWI call.

T

235

236

Part 3 – C++ language issues
237

238

12 C++ implementation details

his chapter describes implementation specific behaviour of the C++ Language

System. Implementation specific behaviours can be categorised as follows:

1 Behaviour that the Reference Manual defines as ‘implementation dependent’

2 Behaviour that depends on the underlying C compiler or preprocessor used
with Release 3.0

3 Properties that are defined in the standard header files stddef.h,
limits.h, and stdlib.h

4 Translation limits

5 Language constructs that are not implemented in this release.

This chapter addresses categories 1, 2, 4, and 5. For details about properties
defined in the standard header files (category 3), see the headers themselves.
Additional information about constructs that are not implemented is provided in
the appendix C++ errors and warnings on page 421, which contains an alphabetical
listing of the ‘not implemented’ error messages.

The ordering and numbering of sections in this chapter corresponds to the order
and numbering of the related sections in the Reference Manual. The section
Translation Limits below (which does not have a corresponding section in the
Reference Manual) precedes the numbered sections.

Translation Limits

Release 3.0 of the Acorn C++ Language System imposes the following translation
limits:

● 50 nesting levels of compound statements

● 10 nesting levels of linkage declarations

● 4088 characters in a token

● 22222 virtual functions in a class

● 10000 identifiers generated by the implementation.

Additional translation limits may be inherited from the underlying C compiler and
preprocessor.

T

239

Identifiers (2.3)
Identifiers (2.3)

Identifiers reserved by Release 3.0

Release 3.0 reserves identifiers that contain a sequence of two underscores for its
own use. In addition, identifiers reserved in the ANSI C standard are also reserved
by Release 3.0. Under the +w option, identifiers with double underscores result in
a warning in Release 3.0.

Character Constants (2.5.2)

Value of multicharacter constants

The Reference Manual states that the value of a multicharacter constant, such as
'abcd', is implementation dependent. Release 3.0 passes these constants to the
underlying C compiler, which determines their values. A multicharacter constant
containing more characters than sizeof(int) is reported as an error by
Release 3.0.

Value of (single) character constants

The Reference Manual states that the value of a character constant is implementation
dependent if it exceeds that of the largest char. Release 3.0 accepts octal and
hexadecimal character literals that do not fit in a char. It uses the low order bits
that make up the value of the constant. For example, the octal character constant
'\777' is treated as '\377'. The hexadecimal character constant '\x123' is
treated as '\x23'.

Wide character constants

Release 3.0 does not implement wide character constants, such as L'ab'. A ‘not
implemented’ error message is reported.

Floating Constants (2.5.3)

Long double floating constants

When compiling with the +a0 option, Release 3.0 removes an l or L suffix from a
floating constant before passing the constant to the underlying C compiler. Under
the +a1 option such a constant is passed unchanged to the underlying C compiler.
In either case, the constant is considered to be of type long double for purposes
of resolving overloaded function calls.
240

C++ implementation details
String Literals (2.5.4)

Distinct string literals

The Reference Manual states that it is implementation dependent whether all string
literals are distinct. Release 3.0 does not attempt to detect cases where string
literals could be represented as overlapping objects. The underlying C compiler
may, however, detect such cases and attempt to overlap their storage.

Wide character strings

Release 3.0 does not implement wide character strings, such as L"abcd". A ‘not
implemented’ error message is reported.

Start and Termination (3.4)

Type of main()

The Reference Manual states that the type of main() is implementation dependent.
Release 3.0 itself does not impose any restrictions on the type of main(), but the
underlying C compiler or the target environment may impose such restrictions.

Linkage of main()

The Acorn C++ Language System treats main() as if its linkage were
extern "C".

Fundamental Types (3.6.1)

Signed integral types

Release 3.0 does not implement the type specifier signed; it issues a warning and
proceeds as though the specifier signed had not appeared.

Long double type

When Release 3.0 is invoked with the +a0 option, the type long double is
considered to be the same size and precision as the type double in the underlying
C compiler. Under the +a1 option, long double is passed to the underlying C
compiler as long double. In either case, type long double is considered a
distinct type for purposes of resolving overloaded function declarations and
invocations.
241

Integral Conversions (4.2)
Alignment requirements

Release 3.0 does not impose any alignment restrictions when allocating objects of
a particular type. Such restrictions, if they exist, are enforced by the underlying C
compiler.

Integral Conversions (4.2)

Conversion to a signed type

When a value of an integral type is converted to a signed integral type with fewer
bits in the representation, Release 3.0 issues a warning message if the +w option is
specified. The runtime behaviour of such a conversion depends on the treatment of
the conversion by the underlying C compiler.

Expressions (5)

Overflow and divide check

The Reference Manual states that the handling of overflow and divide check in
expression evaluation is implementation dependent. When the second operand of
a division or modulus operator is known to be zero at compile time, Release 3.0
reports an error. Overflow and other divide check conditions are handled by the
underlying C compiler and execution environment.

Function Call (5.2.2)

Evaluation order

The Reference Manual states that the order of evaluation of arguments to a function
call is implementation dependent; similarly, the order of evaluation of the postfix
expression, which designates the function to be called, and the argument
expression list are implementation dependent. In both cases the order depends on
the treatment by the underlying C compiler.
242

C++ implementation details
Explicit Type Conversion (5.4)

Explicit conversions between pointer and integral types

The Reference Manual states that the value obtained by explicitly converting a
pointer to an integral type large enough to hold it is implementation dependent.
This behaviour is defined by the underlying C compiler. Similarly, the behaviour
when explicitly converting an integer to a pointer depends on the underlying C
compiler.

Multiplicative Operators (5.6)

Sign of the remainder

The Reference Manual states that the sign of the result of the modulus operator is
non-negative if both operands are non-negative; otherwise, the sign of the result is
implementation dependent. This behaviour depends on the underlying C compiler
except when the values of both operands are known at compile time. In this case,
the sign of the result is the same as the sign of the numerator.

Shift Operators (5.8)

Result of right shift

The Reference Manual states that the result of a right shift when the left operand is a
signed type with a negative value is implementation dependent. This behaviour
depends on the underlying C compiler.

Relational Operators (5.9)

Pointer comparisons

According to the Reference Manual, certain pointer comparisons are implementation
dependent. For Release 3.0, the results of these comparisons depend on the
underlying C compiler.
243

Storage Class Specifiers (7.1.1)
Storage Class Specifiers (7.1.1)

Inline functions

The Reference Manual states that the inline specifier is a hint to the compiler.

When compiling with the +d option, Release 3.0 always generates out-of-line calls
to inline functions.

Type Specifiers (7.1.6)

Volatile

Release 3.0 does not implement the type specifier volatile. If it is applied to a
member function, a ‘not implemented’ error message is issued; otherwise it is
ignored and a warning message is issued.

Signed

Release 3.0 does not implement the type specifier signed; it is ignored and a
warning message is issued.

Asm Declarations (7.3)

Effect of an asm declaration

Release 3.0 passes asm declarations to the underlying C compiler without
modification. However, the compiler supplied with Acorn C/C++ will fault them.

Linkage Specifications (7.4)

Languages supported

Release 3.0 supports linkage to C and C++.

Linkage to functions

The effect of a "C" linkage specification (extern "C") on a function that is not a
member function is that the function name is not encoded with type information,
as is otherwise done for C++ functions. Member functions are not affected by
linkage specifications.
244

C++ implementation details
Linkage to non-functions

The C linkage specification (extern "C"), when applied to a non-function
declaration, does not affect the C code generated.

Class Members (9.2)

Allocation of non-static data members

The Reference Manual states that the order of allocation of non-static data members
across access-specifiers is implementation dependent. Release 3.0 allocates
non-static data members in declaration order.

Bitfields (9.6)

Allocation and alignment of bitfields

The Reference Manual states that the allocation and alignment of bitfields within a
class object is implementation dependent. Responsibility for the allocation and
alignment of bitfields rests with the underlying C compiler.

Sign of ‘plain’ bitfields

Whether the high-order bit position of a ‘plain’ int bitfield is treated as a sign bit
depends on the behaviour of the underlying C compiler.

Multiple Base Classes (10.1)

Allocation of base classes

The Reference Manual states that the order in which storage is allocated for base
classes is implementation dependent. For non-virtual base classes, Release 3.0
allocates storage in the order that they are mentioned in the derived class
declaration.
245

Argument Matching (13.2)
Argument Matching (13.2)

Integral arguments

The type of the result of an integral promotion (4.1) depends on the execution
environment, as does the type of an unsuffixed integer constant (2.5.1).
Consequently, the determination of which overloaded function to call may also
depend on the execution environment, as illustrated by an example in 13.2 of the
Reference Manual.

Exception Handling (experimental) (15)

Release 3.0 does not implement exception handling. The keyword catch is
reserved for future use. A ‘not implemented’ error message is reported if catch is
seen.

Predefined Names (16.10)

Predefined macros

The following macros are defined by Release 3.0:

__cplusplus The decimal constant 1.

Other macros may be predefined by the underlying preprocessor.
246

13 The Streams library

he Streams library is a part of the C++ library, ported from that supplied with

AT&T’s CFront product. The only significant change made in porting the library

is the handling of file modes, because of the differences between filing systems in
RISC OS and UNIX.

T

247

Introduction
Introduction

iostream – buffering, formatting and input/output

Synopsis

#include <iostream.h>
class streambuf ;
class ios ;
class istream : virtual public ios ;
class ostream : virtual public ios ;
class iostream : public istream, public ostream ;
class istream_withassign : public istream ;
class ostream_withassign : public ostream ;
class iostream_withassign : public iostream ;

class Iostream_init ;

extern istream_withassign cin ;
extern ostream_withassign cout ;
extern ostream_withassign cerr ;
extern ostream_withassign clog ;

#include <fstream.h>
class filebuf : public streambuf ;
class fstream : public iostream ;
class ifstream : public istream ;
class ofstream : public ostream ;

#include <strstream.h>
class strstreambuf : public streambuf ;
class istrstream : public istream ;
class ostrstream : public ostream ;

#include <stdiostream.h>
class stdiobuf : public streambuf ;
class stdiostream : public ios ;

Description

The C++ iostream package declared in iostream.h and other header files
consists primarily of a collection of classes. Although originally intended only to
support input/output, the package now supports related activities such as incore
formatting.

In the iostream sections, character refers to a value that can be held in either a char
or unsigned char. When functions that return an int are said to return a
character, they return a positive value. Usually such functions can also return EOF
248

The Streams library
(–1) as an error indication. The piece of memory that can hold a character is
referred to as a byte. Thus, either a char* or an unsigned char* can point to an
array of bytes.

The iostream package consists of several core classes, which provide the basic
functionality for I/O conversion and buffering, and several specialised classes
derived from the core classes. Both groups of classes are listed below.

Core Classes

The core of the iostream package comprises the following classes:

streambuf

This is the base class for buffers. It supports insertion (also known as storing or
putting) and extraction (also known as fetching or getting) of characters. Most
members are inlined for efficiency. The public interface of class streambuf is
described in streambuf – public on page 298, and the protected interface (for derived
classes) is described in streambuf – protected on page 290.

ios

This class contains state variables that are common to the various stream classes,
for example, error states and formatting states. See ios on page 261.

istream

This class supports formatted and unformatted conversion from sequences of
characters fetched from streambufs. See istream on page 272.

ostream

This class supports formatted and unformatted conversion to sequences of
characters stored into streambufs. See ostream on page 283.

iostream

This class combines istream and ostream. It is intended for situations in which
bidirectional operations (inserting into and extracting from a single sequence of
characters) are desired. See ios on page 261.
249

Introduction
istream_withassign
ostream_withassign
iostream_withassign

These classes add assignment operators and a constructor with no operands to the
corresponding class without assignment. The predefined streams (see below)
cin, cout, cerr, and clog, are objects of these classes. See istream on page 272,
ostream on page 283, and ios on page 261.

Iostream_init

This class is present for technical reasons relating to initialisation. It has no public
members. The Iostream_init constructor initialises the predefined streams
(listed below). Because an object of this class is declared in the iostream.h
header file, the constructor is called once each time the header is included
(although the real initialisation is only done once), and therefore the predefined
streams will be initialised before they are used. In some cases, global constructors
may need to call the Iostream_init constructor explicitly to ensure the
standard streams are initialised before they are used.

Predefined streams

The following streams are predefined:

cin

The standard input (file descriptor 0).

cout

The standard output (file descriptor 1).

cerr

Standard error (file descriptor 2). Output through this stream is unit-buffered,
which means that characters are flushed after each inserter operation. (See osfx()
on page 285 in ostream, and unitbuf on page 266 in ios.)

clog

This stream is also directed to file descriptor 2, but unlike cerr its output is
buffered.
250

The Streams library
Note: cin, cerr, and clog are tied to cout so that any use of these will cause
cout to be flushed.

In addition to the core classes enumerated above, the iostream package contains
additional classes derived from them and declared in other headers. Programmers
may use these, or may choose to define their own classes derived from the core
iostream classes.

Classes derived from streambuf

Classes derived from streambuf define the details of how characters are
produced or consumed. Derivation of a class from streambuf (the protected
interface) is discussed in streambuf – protected on page 290. The available buffer classes
are:

filebuf

This buffer class supports I/O through file descriptors. Members support opening,
closing, and seeking. Common uses do not require the program to manipulate file
descriptors. See filebuf on page 253.

stdiobuf

This buffer class supports I/O through stdio FILE structs. It is intended for use
when mixing C and C++ code. New code should prefer to use filebufs. See
stdiobuf on page 289.

strstreambuf

This buffer class stores and fetches characters from arrays of bytes in memory (i.e.
strings). See strstreambuf on page 306.

Classes derived from istream, ostream, and iostream

Classes derived from istream, ostream, and iostream specialise the core
classes for use with particular kinds of streambufs. These classes are:

ifstream
ofstream
fstream

These classes support formatted I/O to and from files. They use a filebuf to do
the I/O. Common operations (such as opening and closing) can be done directly on
streams without explicit mention of filebufs. See fstream on page 257.
251

Introduction
istrstream
ostrstream

These classes support ‘in core’ formatting. They use a strstreambuf. See
strstream on page 303.

stdiostream

This class specialises iostream for stdio FILEs. See stdiostream.h.

See also

ios (page 261), streambuf – public (page 298), streambuf – protected (page 290),
filebuf (page 253), stdiobuf (page 289), strstreambuf (page 306), istream (page 272),
ostream (page 283), fstream (page 257), strstream (page 303), manipulators (page 279)
252

The Streams library
filebuf

filebuf – buffer for file I/O

Synopsis

#include <iostream.h>

typedef long streamoff, streampos;
class ios {
public:

enum seek_dir { beg, cur, end };
enum open_mode { in, out, ate, app, trunc, nocreate, noreplace } ;
// and lots of other stuff; see ios on page 261

} ;

#include <fstream.h>

class filebuf : public streambuf {
public:

static const int openprot ; /* default protection for open */

filebuf() ;
~filebuf() ;
filebuf(int d);
filebuf(int d, char* p, int len) ;

filebuf* attach(int d) ;
filebuf* close();
int fd();
int is_open();
filebuf* open(char *name, int omode, int prot=openprot) ;
streampos seekoff(streamoff, seek_dir, int omode) ;
streampos seekpos(streampos, int omode) ;
streambuf* setbuf(char* p, int len) ;
int sync() ;

};

Description

filebufs specialise streambufs to use a file as a source or sink of characters.
Characters are consumed by doing writes to the file, and are produced by doing
reads. When the file is seekable, a filebuf allows seeks. At least 4 characters of
putback are guaranteed. When the file permits reading and writing, the filebuf
permits both storing and fetching. No special action is required between gets and
puts (unlike stdio). A filebuf that is connected to a file descriptor is said to be
open.

Under RISC OS openprot is ignored.
253

filebuf
The reserve area (or buffer; see streambuf – public on page 298 and streambuf – protected on
page 290) is allocated automatically if one is not specified explicitly with a
constructor or a call to setbuf(). filebufs can also be made unbuffered
with certain arguments to the constructor or setbuf(), in which case a system
call is made for each character that is read or written. The get and put pointers
into the reserve area are conceptually tied together; they behave as a single
pointer. Therefore, the descriptions below refer to a single get/put pointer.

In the descriptions below, assume:

● f is a filebuf.

● pfb is a filebuf*.

● psb is a streambuf*.

● i, d, len, and prot are ints.

● name and ptr are char*s.

● mode is an int representing an open_mode.

● off is a streamoff.

● p and pos are streampos’s.

● dir is a seek_dir.

Constructors

filebuf()

Constructs an initially closed filebuf.

filebuf(d)

Constructs a filebuf connected to file descriptor d.

filebuf(d, p, len)

Constructs a filebuf connected to file descriptor d and initialised to use the
reserve area starting at p and containing len bytes. If p is null or len is zero or less,
the filebuf will be unbuffered.
254

The Streams library
Members

pfb=f.attach(d)

Connects f to an open file descriptor, d. attach() normally returns &f, but
returns 0 if f is already open.

pfb=f.close()

Flushes any waiting output, closes the file descriptor, and disconnects f. Unless an
error occurs, f’s error state will be cleared. close() returns &f unless errors occur,
in which case it returns 0. Even if errors occur, close() leaves the file descriptor
and f closed.

i=f.fd()

Returns i, the file descriptor f is connected to. If f is closed, i is EOF.

i=f.is_open()

Returns non-zero when f is connected to a file descriptor, and zero otherwise.

pfb=f.open(name, mode, prot)

Opens file name and connects f to it. If the file does not already exist, an attempt
is made to create it, unless ios::nocreate is specified in mode. Under RISC OS,
prot is ignored. Failure occurs if f is already open. open() normally returns &f,
but if an error occurs it returns 0. The members of open_mode are bits that may be
OR’d together. (Because the OR’ing returns an int, open() takes an int rather
than an open_mode argument.) The meanings of these bits in mode are described
in detail in fstream on page 257.

p=f.seekoff(off, dir, mode)

Moves the get/put pointer as designated by off and dir. It may fail if the file that
f is attached to does not support seeking, or if the attempted motion is otherwise
invalid (such as attempting to seek to a position before the beginning of file). off
is interpreted as a count relative to the place in the file specified by dir as
described in streambuf – public on page 298. mode is ignored. seekoff() returns p,
the new position, or EOF if a failure occurs. The position of the file after a failure is
undefined.
255

filebuf
p=f.seekpos(pos, mode)

Moves the file to a position pos as described in streambuf – public on page 298.
mode is ignored. seekpos() normally returns pos, but on failure it returns EOF.

psb=f.setbuf(ptr, len)

Sets up the reserve area as len bytes beginning at ptr. If ptr is null or len is less
than or equal to 0, f will be unbuffered. setbuf() normally returns &f. However,
if f is open and a buffer has been allocated, no changes are made to the reserve
area or to the buffering status, and setbuf() returns 0.

i=f.sync()

Attempts to force the state of the get/put pointer of f to agree (be synchronised)
with the state of the file f.fd(). This means it may write characters to the file if
some have been buffered for output or attempt to reposition (seek) the file if
characters have been read and buffered for input. Normally, sync() returns 0, but
it returns EOF if synchronisation is not possible.

Sometimes it is necessary to guarantee that certain characters are written together.
To do this, the program should use setbuf() (or a constructor) to guarantee that
the reserve area is at least as large as the number of characters that must be
written together. It can then call sync(), then store the characters, then call
sync() again.

See also

streambuf – public (page 298), streambuf – protected (page 290), fstream (page 257).
256

The Streams library
fstream

fstream – iostream and streambuf specialised to files

Synopsis

#include <fstream.h>

typedef long streamoff, streampos;
class ios {
public:

enum seek_dir { beg, cur, end } ;
enum open_mode { in, out, ate, app, trunc, nocreate, noreplace } ;
enum io_state { goodbit=0, eofbit, failbit, badbit } ;
// and lots of other stuff; see ios on page 261

};

class ifstream : istream {
ifstream() ;
~ifstream() ;
ifstream(const char* name, int =ios::in,

int prot =filebuf::openprot) ;
ifstream(int fd) ;
ifstream(int fd, char* p, int l) ;

void attach(int fd) ;
void close() ;
void open(char* name, int =ios::in,

int prot=filebuf::openprot) ;
filebuf* rdbuf() ;
void setbuf(char* p, int l) ;

};

class ofstream : ostream {
ofstream() ;
~ofstream() ;
ofstream(const char* name, int =ios::out,

int prot =filebuf::openprot) ;
ofstream(int fd) ;
ofstream(int fd, char* p, int l) ;

void attach(int fd) ;
void close() ;
void open(char* name, int =ios::out,

int prot=filebuf::openprot) ;
filebuf* rdbuf() ;
void setbuf(char* p, int l) ;

};
257

fstream
class fstream : iostream {
fstream() ;
~fstream() ;
fstream(const char* name, int mode,

int prot =filebuf::openprot) ;
fstream(int fd) ;
fstream(int fd, char* p, int l) ;

void attach(int fd) ;
void close() ;
void open(char* name, int mode,

int prot=filebuf::openprot) ;
filebuf* rdbuf() ;
void setbuf(char* p, int l) ;

};

Description

ifstream, ofstream, and fstream specialise istream, ostream, and
iostream, respectively, to files. That is, the associated streambuf will be a
filebuf.

In the following descriptions, assume:

● f is any of ifstream, ofstream, or fstream.

● pfb is a filebuf*.

● psb is a streambuf*.

● name and ptr are char*s.

● i, fd, len, and prot are ints.

● mode is an int representing an open_mode.

Constructors

The constructors for xstream, where x is either if, of, or f, are:

xstream()

Constructs an unopened xstream.

xstream(name, mode, prot)

Constructs an xstream and opens file name using mode as the open mode.
Under RISC OS prot is ignored. The error state (io_state) of the constructed
xstream will indicate failure in case the open fails.
258

The Streams library
xstream(d)

Constructs an xstream connected to file descriptor d, which must be already
open.

xstream(d,ptr,len)

Constructs an xstream connected to file descriptor d, and, in addition, initialises
the associated filebuf to use the len bytes at ptr as the reserve area. If ptr is
null or len is 0, the filebuf will be unbuffered.

Member functions

f.attach(d)

Connects f to the file descriptor d. A failure occurs when f is already connected to
a file. A failure sets ios::failbit in f’s error state.

f.close()

Closes any associated filebuf and thereby breaks the connection of the f to a
file.

f’s error state is cleared except on failure. A failure occurs when the call to
f.rdbuf()->close() fails.

f.open(name,mode,prot)

Opens file name and connects f to it. If the file does not already exist, an attempt
is made to create it unless ios::nocreate is set. Under RISC OS prot is
ignored. Failure occurs if f is already open, or the call to f.rdbuf()->open()
fails. ios::failbit is set in f’s error status on failure. The members of
open_mode are bits that may be OR’d together. (Because the OR’ing returns an
int, open() takes an int rather than an open_mode argument.) The meanings
of these bits in mode are:

ios::app A seek to the end of file is performed. Subsequent data
written to the file is always added (appended) at the end
of file. ios::app implies ios::out.

ios::ate A seek to the end of the file is performed during the
open(). ios::ate does not imply ios::out.

ios::in The file is opened for input. ios::in is implied by
construction and opens of ifstreams. For fstreams it
indicates that input operations should be allowed if
possible. Is is legal to include ios::in in the modes of
259

fstream
an ostream in which case it implies that the original file
(if it exists) should not be truncated. If the file being
opened for input does not exist, the open will fail.

ios::out The file is opened for output. ios::out is implied by
construction and opens of ofstreams. For fstream it
says that output operations are to be allowed.
ios::out may be specified.

ios::trunc If the file already exists, its contents will be truncated
(discarded). This mode is implied when ios::out is
specified (including implicit specification for ofstream)
and neither ios::ate nor ios::app is specified.

ios::nocreate If the file does not already exist, the open() will fail.

ios::noreplace If the file already exists, the open() will fail. Only valid
with ios::out.

pfb=f.rdbuf()

Returns a pointer to the filebuf associated with f. fstream::rdbuf() has
the same meaning as iostream::rdbuf() but is typed differently.

f.setbuf(p,len)

Has the usual effect of a setbuf() (see filebuf on page 253), offering space for a
reserve area or requesting unbuffered I/O. Normally the returned psb is
f.rdbuf(), but it is 0 on failure. A failure occurs if f is open or the call to
f.rdbuf()->setbuf fails.

See also

filebuf (page 253), istream (page 272), ios (page 261), ostream (page 283), streambuf –
public (page 298)
260

The Streams library
ios

ios – input/output formatting

Synopsis

#include <iostream.h>

class ios {
public:

enum io_state { goodbit=0, eofbit, failbit, badbit };
enum open_mode { in, out, ate, app, trunc, nocreate, noreplace };
enum seek_dir { beg, cur, end };
/* flags for controlling format */
enum { skipws=01,

left=02, right=04, internal=010,
dec=020, oct=040, hex=0100,
showbase=0200, showpoint=0400,
uppercase=01000, showpos=02000,
scientific=04000, fixed=010000,
unitbuf=020000, stdio=040000 };

static const long basefield;
/* dec|oct|hex */

static const long adjustfield;
/* left|right|internal */

static const long floatfield;
/* scientific|fixed */

public:
ios(streambuf*);

int bad();
static long bitalloc();
void clear(int state =0);
int eof();
int fail();
char fill();
char fill(char);
long flags();
long flags(long);
int good();
long& iword(int);
int operator!();

operator void*();
int precision();
int precision(int);
streambuf* rdbuf();
void* & pword(int);
int rdstate();
long setf(long setbits, long field);
long setf(long);
static void sync_with_stdio();
261

ios
ostream* tie();
ostream* tie(ostream*);
long unsetf(long);
int width();
int width(int);
static int xalloc();

protected:
ios();
init(streambuf*);

private:
ios(ios&);

void operator=(ios&);
};

/* Manipulators */
ios& dec(ios&) ;
ios& hex(ios&) ;
ios& oct(ios&) ;
ostream& endl(ostream& i) ;
ostream& ends(ostream& i) ;
ostream& flush(ostream&) ;
istream& ws(istream&) ;

Description

The stream classes derived from class ios provide a high level interface that
supports transferring formatted and unformatted information into and out of
streambufs. This section describes the operations common to both input and
output.

Several enumerations are declared in class ios, open_mode, io_state,
seek_dir, and format flags, to avoid polluting the global name space. The
io_states are described in Error states on page 263. The format fields are
described in Formatting on page 264. The open_modes are described in detail
under pfb=f.open(name, mode, prot) on page 255, in the section fstream. The
seek_dirs are described under pos=sb->seekoff(off, dir, mode) on page 295, in the
section streambuf – public.

In the following descriptions assume:

● s and s2 are ioss.

● sr is an ios&.

● sp is a ios*.

● i, oi, j, and n are ints.

● l, f, and b are longs.

● c and oc are chars.

● osp and oosp are ostream*s.
262

The Streams library
● sb is a streambuf*.

● pos is a streampos.

● off is a streamoff.

● dir is a seek_dir.

● mode is an int representing an open_mode.

● fct is a function with type ios& (*)(ios&).

● vp is a void*&.

Constructors and assignment

ios(sb)

The streambuf denoted by sb becomes the streambuf associated with the
constructed ios. If sb is null, the effect is undefined.

ios(sr)
s2=s

Copying of ioss is not well-defined in general, therefore the constructor and
assignment operators are private so that the compiler will complain about
attempts to copy ios objects. Copying pointers to iostreams is usually what is
desired.

ios()
init(sb)

Because class ios is now inherited as a virtual base class, a constructor with no
arguments must be used. This constructor is declared protected. Therefore
ios::init(streambuf*) is declared protected and must be used for
initialisation of derived classes.

Error states

An ios has an internal error state (which is a collection of the bits declared as
io_states). Members related to the error state are:

i=s.rdstate()

Returns the current error state.

s.clear(i)

Stores i as the error state. If i is zero, this clears all bits. To set a bit without
clearing previously set bits requires something like
s.clear(ios::badbit|s.rdstate()).
263

ios
i=s.good()

Returns non-zero if the error state has no bits set, zero otherwise.

i=s.eof()

Returns non-zero if eofbit is set in the error state, zero otherwise. Normally this
bit is set when an end-of-file has been encountered during an extraction.

i=s.fail()

Returns non-zero if either badbit or failbit is set in the error state, zero
otherwise. Normally this indicates that some extraction or conversion has failed,
but the stream is still usable. That is, once the failbit is cleared, I/O on s can
usually continue.

i=s.bad()

Returns non-zero if badbit is set in the error state, zero otherwise. This usually
indicates that some operation on s.rdbuf() has failed, a severe error, from
which recovery is probably impossible. That is, it will probably be impossible to
continue I/O operations on s.

Operators

Two operators are defined to allow convenient checking of the error state of an
ios: operator!() and operator void*(). The latter converts an ios to a
pointer so that it can be compared to zero. The conversion will return 0 if failbit
or badbit is set in the error state, and will return a pointer value otherwise. This
pointer is not meant to be used. This allows one to write expressions such as:

if (cin) ...
if (cin >> x) ...

The ! operator returns non-zero if failbit or badbit is set in the error state,
which allows expressions like the following to be used:

if (!cout) ...

Formatting

An ios has a format state that is used by input and output operations to control
the details of formatting operations. For other operations the format state has no
particular effect and its components may be set and examined arbitrarily by user
code. Most formatting details are controlled by using the flags(), setf(), and
unsetf() functions to set the following flags, which are declared in an
enumeration in class ios. Three other components of the format state are
controlled separately with the functions fill(), width(), and precision().
264

The Streams library
skipws

If skipws is set, whitespace will be skipped on input. This applies to scalar
extractions. When skipws is not set, whitespace is not skipped before the
extractor begins conversion. If skipws is not set and a zero length field is
encountered, the extractor will signal an error. Additionally, the arithmetic
extractors will signal an error if skipws is not set and a whitespace is
encountered.

left
right
internal

These flags control the padding of a value. When left is set, the value is
left-adjusted, that is, the fill character is added after the value. When right is set,
the value is right-adjusted, that is, the fill character is added before the value.
When internal is set, the fill character is added after any leading sign or base
indication, but before the value. Right-adjustment is the default if none of these
flags is set. These fields are collectively identified by the static member,
ios::adjustfield. The fill character is controlled by the fill() function, and
the width of padding is controlled by the width() function.

dec
oct
hex

These flags control the conversion base of a value. The conversion base is 10
(decimal) if dec is set, but if oct or hex is set, conversions are done in octal or
hexadecimal, respectively. If none of these is set, insertions are in decimal, but
extractions are interpreted according to the C++ lexical conventions for integral
constants. These fields are collectively identified by the static member,
ios::basefield. The manipulators hex, dec, and oct can also be used to set
the conversion base; see the section Built-in Manipulators on page 270.

showbase

If showbase is set, insertions will be converted to an external form that can be
read according to the C++ lexical conventions for integral constants. showbase is
unset by default.

showpos

If showpos is set, then a ‘+’ will be inserted into a decimal conversion of a positive
integral value.
265

ios
uppercase

If uppercase is set, then an uppercase ‘X’ will be used for hexadecimal
conversion when showbase is set, or an uppercase ‘E’ will be used to print
floating point numbers in scientific notation.

showpoint

If showpoint is set, trailing zeros and decimal points appear in the result of a
floating point conversion.

scientific
fixed

These flags control the format to which a floating point value is converted for
insertion into a stream. If scientific is set, the value is converted using scientific
notation, where there is one digit before the decimal point and the number of
digits after it is equal to the precision (see below), which is six by default. An
uppercase ‘E’ will introduce the exponent if uppercase is set, a lowercase ‘e’ will
appear otherwise. If fixed is set, the value is converted to decimal notation with
precision digits after the decimal point, or six by default. If neither
scientific nor fixed is set, then the value will be converted using either
notation, depending on the value; scientific notation will be used if the exponent
resulting from the conversion is less than –4 or greater than or equal to
precision digits. Otherwise the value will be converted to decimal notation with
precision digits total. If showpoint is not set, trailing zeroes are removed from
the result and a decimal point appears only if it is followed by a digit.
scientific and fixed are collectively identified by the static member
ios::floatfield.

unitbuf

When set, a flush is performed by ostream::osfx() after each insertion. Unit
buffering provides a compromise between buffered output and unbuffered output.
Performance is better under unit buffering than unbuffered output, which makes a
system call for each character output. Unit buffering makes a system call for each
insertion operation, and doesn’t require the user to call ostream::flush().

stdio

When set, stdout and stderr are flushed by ostream::osfx() after each
insertion.
266

The Streams library
The following functions use and set the format flags and variables:

oc=s.fill(c)

Sets the fill character format state variable to c and returns the previous value. c will
be used as the padding character, if one is necessary (see width() below). The
default fill or padding character is a space. The positioning of the fill character is
determined by the right, left, and internal flags; see above. A
parameterised manipulator, setfill, is also available for setting the fill
character; see manipulators on page 279.

c=s.fill()

Returns the ‘fill character’ format state variable.

l=s.flags()

Returns the current format flags.

l=s.flags(f)

Resets all the format flags to those specified in f and returns the previous settings.

oi=s.precision(i)

Sets the precision format state variable to i and returns the previous value.
This variable controls the number of significant digits inserted by the floating point
inserter. The default is 6. A parameterised manipulator, setprecision, is also
available for setting the precision; see manipulators on page 279.

i=s.precision()

Returns the precision format state variable.

l=s.setf(b)

Turns on in s the format flags marked in b and returns the previous settings. A
parameterised manipulator, setiosflags, performs the same function; see
manipulators on page 279.

l=s.setf(b,f)

Resets in s only the format flags specified by f to the settings marked in b, and
returns the previous settings. That is, the format flags specified by f are cleared in
s, then reset to be those marked in b. For example, to change the conversion base
in s to be hex, one could write: s.setf(ios::hex,ios::basefield).
ios::basefield specifies the conversion base bits as candidates for change,
267

ios
and ios::hex specifies the new value. s.setf(0,f) will clear all the bits
specified by f, as will a parameterised manipulator, resetiosflags; see
manipulators on page 279.

l=s.unsetf(b)

Unsets in s the bits set in b and returns the previous settings.

oi=s.width(i)

Sets the field-width format variable to i and returns the previous value. When the
field width is zero (the default), inserters will insert only as many characters as
necessary to represent the value being inserted. When the field-width is non-zero,
the inserters will insert at least that many characters, using the fill character to pad
the value, if the value being inserted requires fewer than field-width characters to be
represented. However, the numeric inserters never truncate values, so if the value
being inserted will not fit in field-width characters, more than field-width characters
will be output. The field-width is always interpreted as a minimum number of
characters; there is no direct way to specify a maximum number of characters. The
field-width format variable is reset to the default (zero) after each insertion or
extraction, and in this sense it behaves as a parameter for insertions and
extractions. A parameterised manipulator, setw, is also available for setting the
width; see manipulators on page 279.

i=s.width()

Returns the field-width format variable.

User-defined Format Flags

Class ios can be used as a base class for derived classes that require additional
format flags or variables. The iostream library provides several functions to do this.
The two static member functions ios::xalloc and ios::bitalloc, allow
several such classes to be used together without interference.

b=ios::bitalloc()

Returns a long with a single, previously unallocated, bit set. This allows users who
need an additional flag to acquire one, and pass it as an argument to
ios::setf(), for example.

i=ios::xalloc()

Returns a previously unused index into an array of words available for use as
format state variables by derived classes.
268

The Streams library
l=s.iword(i)

When i is an index allocated by ios::xalloc, iword() returns a reference to
the ith user-defined word.

vp=s.pword(i)

When i is an index allocated by ios::xalloc, pword() returns a reference to
the ith user-defined word. pword() is the same as iword except that it is typed
differently.

Other members

sb=s.rdbuf()

Returns a pointer to the streambuf associated with s when s was constructed.

ios::sync_with_stdio()

Solves problems that arise when mixing stdio and iostreams. The first time it is
called it will reset the standard iostreams (cin, cout, cerr, clog) to be streams
using stdiobufs. After that, input and output using these streams may be mixed
with input and output using the corresponding FILEs (stdin, stdout, and
stderr) and will be properly synchronised. sync_with_stdio() makes cout
and cerr unit buffered (see ios::unitbuf and ios::stdio above). Invoking
sync_with_stdio() degrades performance a variable amount, depending on
the length of the strings being inserted (shorter strings incur a larger performance
hit).

oosp=s.tie(osp)

Sets the tie variable to osp, and returns its previous value. This variable supports
automatic ‘flushing’ of ioss. If the tie variable is non-null and an ios needs
more characters or has characters to be consumed, the ios pointed at by the tie
variable is flushed. By default, cin is tied initially to cout so that attempts to get
more characters from standard input result in flushing standard output.
Additionally, cerr and clog are tied to cout by default. For other ioss, the tie
variable is set to zero by default.

osp=s.tie()

Returns the tie variable.
269

ios
Built-in Manipulators

Some convenient manipulators (functions that take an ios&, an istream&, or an
ostream& and return their argument; see manipulators on page 279) are:

sr<<dec
sr>>dec

These set the conversion base format flag to 10.

sr<<hex
sr>>hex

These set the conversion base format flag to 16.

sr<<oct
sr>>oct

These set the conversion base format flag to 8.

sr>>ws

Extracts whitespace characters. See istream on page 272.

sr<<endl

Ends a line by inserting a newline character and flushing. See ostream on page 283.

sr<<ends

Ends a string by inserting a null (0) character. See ostream on page 283.

sr<<flush

Flushes outs. See ostream on page 283.

Several parameterised manipulators that operate on ios objects are described in
manipulators on page 279: setw, setfill, setprecision, setiosflags, and
resetiosflags.

The streambuf associated with an ios may be manipulated by other methods
than through the ios. For example, characters may be stored in a queuelike
streambuf through an ostream while they are being fetched through an
istream. Or for efficiency some part of a program may choose to do streambuf
operations directly rather than through the ios. In most cases the program does
not have to worry about this possibility, because an ios never saves information
about the internal state of a streambuf. For example, if the streambuf is
repositioned between extraction operations the extraction (input) will proceed
normally.
270

The Streams library
See also

Introduction (page 248), streambuf – protected (page 290), streambuf – public (page 298),
istream (page 272), ostream (page 283), manipulators (page 279)
271

istream
istream

istream – formatted and unformatted input

Synopsis

#include <iostream.h>

typedef long streamoff, streampos;
class ios {
public:

enum seek_dir { beg, cur, end };
enum open_mode { in, out, ate, app, trunc, nocreate, noreplace } ;
/* flags for controlling format */
enum { skipws=01,

left=02, right=04, internal=010,
dec=020, oct=040, hex=0100,
showbase=0200, showpoint=0400,
uppercase=01000, showpos=02000,
scientific=04000, fixed=010000,
unitbuf=020000, stdio=040000 };

// and lots of other stuff; see ios on page 261
} ;

class istream : public ios {
public:

istream(streambuf*);
int gcount();
istream& get(char* ptr, int len, char delim=’\n’);
istream& get(unsigned char* ptr,int len, char delim=’\n’);

istream& get(unsigned char&);
istream& get(char&);
istream& get(streambuf& sb, char delim =’\n’);
int get();
istream& getline(char* ptr, int len, char delim=’\n’);
istream& getline(unsigned char* ptr, int len, char delim=’\n’);
istream& ignore(int len=1,int delim=EOF);
int ipfx(int need=0);
int peek();
istream& putback(char);
istream& read(char* s, int n);
istream& read(unsigned char* s, int n);
istream& seekg(streampos);
istream& seekg(streamoff, seek_dir);
int sync();
streampos tellg();
272

The Streams library
istream& operator>>(char*);
istream& operator>>(char&);
istream& operator>>(short&);
istream& operator>>(int&);
istream& operator>>(long&);
istream& operator>>(float&);
istream& operator>>(double&);
istream& operator>>(unsigned char*);
istream& operator>>(unsigned char&);
istream& operator>>(unsigned short&);
istream& operator>>(unsigned int&);
istream& operator>>(unsigned long&);
istream& operator>>(streambuf*);
istream& operator>>(istream& (*)(istream&));
istream& operator>>(ios& (*)(ios&));

};

class istream_withassign : public istream {
istream_withassign();

istream& operator=(istream&);
istream& operator=(streambuf*);

};

extern istream_withassign cin;

istream& ws(istream&);
ios& dec(ios&) ;
ios& hex(ios&) ;
ios& oct(ios&) ;

Description

istreams support interpretation of characters fetched from an associated
streambuf. These are commonly referred to as input or extraction operations.
The istream member functions and related functions are described below.

In the following descriptions assume that

● ins is an istream.

● inswa is an istream_withassign.

● insp is an istream*.

● c is a char&

● delim is a char.

● ptr is a char* or unsigned char*.

● sb is a streambuf&.

● i, n, len, d, and need are ints.

● pos is a streampos.

● off is a streamoff.
273

istream
● dir is a seek_dir.

● manip is a function with type istream& (*)(istream&).

Constructors and assignment

istream(sb)

Initialises ios state variables and associates buffer sb with the istream.

istream_withassign()

Does no initialisation.

inswa=sb

Associates sb with inswa and initialises the entire state of inswa.

inswa=ins

Associates ins->rdbuf() with inswa and initialises the entire state of inswa.

Input prefix function

i = ins.ipfx(need)

If ins’s error state is non-zero, returns zero immediately. If necessary (and if it is
non-null), any ios tied to ins is flushed (see the description of ios::tie() on
page 269 onwards of ios. Flushing is considered necessary if either need==0 or if
there are fewer than need characters immediately available. If ios::skipws is
set in ins.flags() and need is zero, then leading whitespace characters are
extracted from ins. ipfx() returns zero if an error occurs while skipping
whitespace; otherwise it returns non-zero.

Formatted input functions call ipfx(0), while unformatted input functions call
ipfx(1); see below.

Formatted input functions (extractors)

ins>>x

Calls ipfx(0) and if that returns non-zero, extracts characters from ins and
converts them according to the type of x. It stores the converted value in x. Errors
are indicated by setting the error state of ins. ios::failbit means that
characters in ins were not a representation of the required type. ios::badbit
indicates that attempts to extract characters failed. ins is always returned.
274

The Streams library
The details of conversion depend on the values of ins’s format state flags and
variables (see ios on page 261) and the type of x. Except that extractions that use
width reset it to 0, the extraction operators do not change the value of ostream’s
format state. Extractors are defined for the following types, with conversion rules
as described below.

char*,
unsigned char*

Characters are stored in the array pointed at by x until a
whitespace character is found in ins. The terminating
whitespace is left in ins. If ins.width() is non-zero it
is taken to be the size of the array, and no more than
ins.width()-1 characters are extracted. A
terminating null character (0) is always stored (even
when nothing else is done because of ins’s error
status). ins.width() is reset to 0.

char&,
unsigned char&

A character is extracted
and stored in x.

short&,
unsigned short&,
int&,
unsigned int&,
long&,
unsigned long&

Characters are extracted and converted to an integral
value according to the conversion specified in ins’s
format flags. Converted characters are stored in x. The
first character may be a sign (+ or -). After that, if
ios::oct, ios::dec, or ios::hex is set in
ins.flags(), the conversion is octal, decimal, or
hexadecimal, respectively. Conversion is terminated by
the first ‘non-digit,’ which is left in ins. Octal digits are
the characters ‘0’ to ‘7’. Decimal digits are the octal
digits plus ‘8’ and ‘9’. Hexadecimal digits are the decimal
digits plus the letters ‘a’ through ‘f’ (in either upper or
lower case). If none of the conversion base format flags
is set, then the number is interpreted according to C++
lexical conventions. That is, if the first characters (after
the optional sign) are 0x or 0X a hexadecimal
conversion is performed on following hexadecimal
digits. Otherwise, if the first character is a 0, an octal
conversion is performed, and in all other cases a decimal
conversion is performed. ios::failbit is set if there
are no digits (not counting the 0 in 0x or 0X) during hex
conversion) available.

float&,
double&

Converts the characters according to C++ syntax for a
float or double, and stores the result in x.
ios::failbit is set if there are no digits available in
ins or if it does not begin with a well formed floating
point number.
275

istream
The type and name (operator>>) of the extraction operations are chosen to give
a convenient syntax for sequences of input operations. The operator overloading of
C++ permits extraction functions to be declared for user-defined classes. These
operations can then be used with the same syntax as the member functions
described here.

ins>>sb

If ios.ipfx(0) returns non-zero, extracts characters from ios and inserts them
into sb. Extraction stops when EOF is reached. Always returns ins.

Unformatted input functions

These functions call ipfx(1) and proceed only if it returns non-zero:

insp=&ins.get(ptr,len,delim)

Extracts characters and stores them in the byte array beginning at ptr and
extending for len bytes. Extraction stops when delim is encountered (delim is
left in ins and not stored), when ins has no more characters, or when the array
has only one byte left. get always stores a terminating null, even if it doesn’t
extract any characters from ins because of its error status. ios::failbit is set
only if get encounters an end of file before it stores any characters.

insp=&ins.get(c)

Extracts a single character and stores it in c.

insp=&ins.get(sb,delim)

Extracts characters from ins.rdbuf() and stores them into sb. It stops if it
encounters end of file or if a store into sb fails or if it encounters delim (which it
leaves in ins). ios::failbit is set if it stops because the store into sb fails.

i=ins.get().

Extracts a character and returns it. i is EOF if extraction encounters end of file.
ios::failbit is never set.

insp=&ins.getline(ptr,len,delim)

Does the same thing as ins.get(ptr,len,delim) with the exception that it
extracts a terminating delim character from ins. In case delim occurs when
exactly len characters have been extracted, termination is treated as being due to
the array being filled, and this delim is left in ins.
276

The Streams library
insp=&ins.ignore(n,d)

Extracts and throws away up to n characters. Extraction stops prematurely if d is
extracted or end of file is reached. If d is EOF it can never cause termination.

insp=&ins.read(ptr,n)

Extracts n characters and stores them in the array beginning at ptr. If end of file is
reached before n characters have been extracted, read stores whatever it can
extract and sets ios::failbit. The number of characters extracted can be
determined via ins.gcount().

Other members

i=ins.gcount()

Returns the number of characters extracted by the last unformatted input function.
Formatted input functions may call unformatted input functions and thereby reset
this number.

i=ins.peek()

Begins by calling ins.ipfx(1). If that call returns zero or if ins is at end of file,
it returns EOF. Otherwise it returns the next character without extracting it.

insp=&ins.putback(c)

Attempts to back up ins.rdbuf(). c must be the character before
ins.rdbuf()’s get pointer. (Unless other activity is modifying ins.rdbuf()
this is the last character extracted from ins.) If it is not, the effect is undefined.
putback may fail (and set the error state). Although it is a member of istream,
putback never extracts characters, so it does not call ipfx. It will, however,
return without doing anything if the error state is non-zero.

i=&ins.sync()

Establishes consistency between internal data structures and the external source
of characters. Calls ins.rdbuf()->sync(), which is a virtual function, so the
details depend on the derived class. Returns EOF to indicate errors.

ins>>manip

Equivalent to manip(ins). Syntactically this looks like an extractor operation,
but semantically it does an arbitrary operation rather than converting a sequence
of characters and storing the result in manip. A predefined manipulator, ws, is
described below.
277

istream
Member functions related to positioning

insp=&ins.seekg(off,dir)

Repositions ins.rdbuf()’s get pointer. See streambuf – public on page 298 for a
discussion of positioning.

insp=&ins.seekg(pos)

Repositions ins.rdbuf()’s get pointer. See streambuf – public on page 298 for a
discussion of positioning.

pos=ins.tellg()

The current position of ios.rdbuf()’s get pointer. See streambuf – public on
page 298 for a discussion of positioning.

Manipulator

ins>>ws

Extracts whitespace characters.

ins>>dec

Sets the conversion base format flag to 10. See ios on page 261.

ins>>hex

Sets the conversion base format flag to 16. See ios on page 261.

ins>>oct

Sets the conversion base format flag to 8. See ios on page 261.

Caveats

There is no overflow detection on conversion of integers.

See also

ios (page 261), streambuf – public (page 298), manipulators (page 279)
278

The Streams library
manipulators

manipulators – iostream out of band manipulations

Synopsis

#include <iostream.h>
#include <iomanip.h>

template <class T>

class SMANIP {
SMANIP(ios& (*)(ios&,T), T);
friend istream& operator>>(istream&, SMANIP<T>&);
friend ostream& operator<<(ostream&, SMANIP<T>&);

};
template <class T>
class SAPP {

SAPP(T)(ios& (*)(ios&,T));
SMANIP<T> operator()(T);

};
template <class T>
class IMANIP {

IMANIP(istream& (*)(istream&,T), T);
friend istream& operator>>(istream&, IMANIP<T>&);

};
template <class T>
class IAPP {

IAPP(istream& (*)(istream&,T));
IMANIP<T> operator()(T);

};
template <class T>
class OMANIP {

OMANIP(ostream& (*)(ostream&,T), T);
friend ostream& operator<<(ostream&, OMANIP<T>&);

};
template <class T>
class OAPP {

OAPP(ostream& (*)(ostream&,T));
OMANIP<T> operator()(T);

};
template <class T>
class IOMANIP {

IOMANIP(iostream& (*)(iostream&,T), T);
friend istream& operator>>(iostream&, IOMANIP<T>&);
friend ostream& operator<<(iostream&, IOMANIP<T>&);

};
template <class T>
class IOAPP {

IOAPP(iostream& (*)(iostream&,T));
IOMANIP<T> operator()(T);

};
279

manipulators
SMANIP<long> resetiosflags(long);
SMANIP<int> setfill(int);
SMANIP<long> setiosflags(long);
SMANIP<int> setprecision(int);
SMANIP<int> setw(int w);

Description

Manipulators are values that may be ‘inserted into’ or ‘extracted from’ streams to
achieve some effect (other than to insert or extract a value representation), with a
convenient syntax. They enable one to embed a function call in an expression
containing a series of insertions or extractions. For example, the predefined
manipulator for ostreams, flush, can be used as follows:

cout << flush

to flush cout. Several iostream classes supply manipulators: see ios on page 261,
istream on page 272, and ostream on page 283. flush is a simple manipulator; some
manipulators take arguments, such as the predefined ios manipulators,
setfill and setw (see below).

In the following descriptions, assume:

● t is a T, or type name.

● s is an ios.

● i is an istream.

● o is an ostream.

● io is an iostream.

● f is an ios& (*)(ios&).

● if is an istream& (*)(istream&).

● of is an ostream& (*)(ostream&).

● iof is an iostream& (*)(iostream&).

● n is an int.

● l is a long.
280

The Streams library
s<<SMANIP<T>(f,t)
s>>SMANIP<T>(f,t)
s<<SAPP<T>(f)(t)
s>>SAPP<T>(f)(t)

Returns f(s,t), where s is the left operand of the insertion or extractor operator
(i.e. s, i, o, or io).

i>>IMANIP<T>(if,t)
i>>IAPP<T>(if)(t)

Returns if(i,t).

o<<OMANIP<T>(of,t)
o<<OAPP<T>(of)(t)

Returns of(o,t).

io<<IOMANIP<T>(iof,t)
io>>IOMANIP<T>(iof,t)
io<<IOAPP<T>(iof)(t)
io>>IOAPP<T>(iof)(t)

Returns iof(io,t).

iomanip.h contains declarations of some manipulators that take an int or a
long argument. These manipulators all have to do with changing the format state
of a stream; see ios on page 261 for further details.

o<<setw(n)
i>>setw(n)

Sets the field width of the stream (left-hand operand: o or i) to n.

o<<setfill(n)
i>>setfill(n)

Sets the fill character of the stream (o or i) to be n.

o<<setprecision(n)
i>>setprecision(n)

Sets the precision of the stream (o or i) to be n.
281

manipulators
o<<setiosflags(l)
i>>setiosflags(l)

Turns on in the stream (o or i) the format flags marked in l. (Calls o.setf(l) or
i.setf(l)).

o<<resetiosflags(l)
i>>resetiosflags(l)

Clears in the stream (o or i) the format bits specified by l. (Calls o.setf(0,l)
or i.setf(0,l)).

See also

ios (page 261), istream (page 272), ostream (page 283)
282

The Streams library
ostream

ostream – formatted and unformatted output

Synopsis

#include <iostream.h>

typedef long streamoff, streampos;
class ios {
public:

enum seek_dir { beg, cur, end };
enum open_mode { in, out, ate, app, trunc, nocreate, noreplace } ;
enum { skipws=01,

left=02, right=04, internal=010,
dec=020, oct=040, hex=0100,
showbase=0200, showpoint=0400,
uppercase=01000, showpos=02000,
scientific=04000, fixed=010000,
unitbuf=020000, stdio=040000 };

// and lots of other stuff; see ios on page 261
} ;

class ostream : public ios {
public:

ostream(streambuf*);
ostream& flush();
int opfx();
ostream& put(char);
ostream& seekp(streampos);
ostream& seekp(streamoff, seek_dir);
streampos tellp();
ostream& write(const char* ptr, int n);
ostream& write(const unsigned char* ptr, int n);
ostream& operator<<(const char*);
ostream& operator<<(char);
ostream& operator<<(short);
ostream& operator<<(int);
ostream& operator<<(long);
ostream& operator<<(float);
ostream& operator<<(double);
ostream& operator<<(unsigned char);
ostream& operator<<(unsigned short);
ostream& operator<<(unsigned int);
ostream& operator<<(unsigned long);
ostream& operator<<(void*);
ostream& operator<<(streambuf*);
ostream& operator<<(ostream& (*)(ostream&));
ostream& operator<<(ios& (*)(ios&));

};
283

ostream
class ostream_withassign {
ostream_withassign();

istream& operator=(istream&);
istream& operator=(streambuf*);

};

extern ostream_withassign cout;
extern ostream_withassign cerr;
extern ostream_withassign clog;

ostream& endl(ostream&) ;
ostream& ends(ostream&) ;
ostream& flush(ostream&) ;
ios& dec(ios&) ;
ios& hex(ios&) ;
ios& oct(ios&) ;

Description

ostreams support insertion (storing) into a streambuf. These are commonly
referred to as output operations. The ostream member functions and related
functions are described below.

In the following descriptions, assume:

● outs is an ostream.

● outswa is an ostream_withassign.

● outsp is an ostream*.

● c is a char.

● ptr is a char* or unsigned char*.

● sb is a streambuf*

● i and n are ints.

● pos is a streampos.

● off is a streamoff.

● dir is a seek_dir.

● manip is a function with type ostream& (*)(ostream&).
284

The Streams library
Constructors and assignment

ostream(sb)

Initialises ios state variables and associates buffer sb with the ostream.

ostream_withassign()

Does no initialisation. This allows a file static variable of this type (cout, for
example) to be used before it is constructed, provided it is assigned to first.

outswa=sb

Associates sb with swa and initialises the entire state of outswa.

inswa=ins

Associates ins->rdbuf() with swa and initialises the entire state of outswa.

Output prefix function

i=outs.opfx()

If outs’s error state is non-zero, returns immediately. If outs.tie() is non-null,
it is flushed. Returns non-zero except when outs’s error state is non-zero.

Output suffix function

osfx()

Performs ‘suffix’ actions before returning from inserters. If ios::unitbuf is set,
osfx() flushes the ostream. If ios::stdio is set, osfx() flushes stdout
and stderr.

osfx() is called by all predefined inserters, and should be called by user-defined
inserters as well, after any direct manipulation of the streambuf. It is not called
by the binary output functions.
285

ostream
Formatted output functions (inserters)

outs<<x

First calls outs.opfx() and if that returns 0, does nothing. Otherwise inserts a
sequence of characters representing x into outs.rdbuf(). Errors are indicated
by setting the error state of outs. outs is always returned.

x is converted into a sequence of characters (its representation) according to rules
that depend on x’s type and outs’s format state flags and variables (see ios on
page 261. Inserters are defined for the following types, with conversion rules as
described below:

char* The representation is the sequence of characters up to (but not
including) the terminating null of the string x points at.

any integral type
except char and
unsigned char

If x is positive the representation contains a sequence of
decimal, octal, or hexadecimal digits with no leading zeros
according to whether ios::dec, ios::oct, or ios::hex,
respectively, is set in ios’s format flags. If none of those flags
are set, conversion defaults to decimal. If x is zero, the
representation is a single zero character(0). If x is negative,
decimal conversion converts it to a minus sign (–) followed by
decimal digits. If x is positive and ios::showpos is set,
decimal conversion converts it to a plus sign (+) followed by
decimal digits. The other conversions treat all values as
unsigned. If ios::showbase is set in ios’s format flags, the
hexadecimal representation contains 0x before the
hexadecimal digits, or 0X if ios::uppercase is set. If
ios::showbase is set, the octal representation contains a
leading 0.

void* Pointers are converted to integral values and then converted to
hexadecimal numbers as if ios::showbase were set.

float, double The arguments are converted according to the current values of
outs.precision(), outs.width() and outs’s format
flags ios::scientific, ios::fixed, and
ios::uppercase. (See ios on page 261.) The default value for
outs.precision() is 6. If neither ios::scientific nor
ios::fixed is set, either fixed or scientific notation is
chosen for the representation, depending on the value of x.

char, unsigned
char

No special conversion is necessary.
286

The Streams library
After the representation is determined, padding occurs. If outs.width() is
greater than 0 and the representation contains fewer than outs.width()
characters, then enough outs.fill() characters are added to bring the total
number of characters to ios.width(). If ios::left is set in ios’s format
flags, the sequence is left-adjusted, that is, characters are added after the
characters determined above. If ios::right is set, the padding is added before
the characters determined above. If ios::internal is set, the padding is added
after any leading sign or base indication and before the characters that represent
the value. ios.width() is reset to 0, but all other format variables are
unchanged. The resulting sequence (padding plus representation) is inserted into
outs.rdbuf().

outs<<sb

If outs.opfx() returns non-zero, the sequence of characters that can be fetched
from sb are inserted into outs.rdbuf(). Insertion stops when no more
characters can be fetched from sb. No padding is performed. Always returns outs.

Unformatted output functions

outsp=&outs.put(c)

Inserts c into outs.rdbuf(). Sets the error state if the insertion fails.

outsp=&outs.write(s,n)

Inserts the n characters starting at s into outs.rdbuf(). These characters may
include zeros (i.e. s need not be a null terminated string).

Other member functions

outsp=&outs.flush()

Storing characters into a streambuf does not always cause them to be consumed
(e.g. written to the external file) immediately. flush() causes any characters that
may have been stored but not yet consumed to be consumed by calling
outs.rdbuf()->sync.

outs<<manip

Equivalent to manip(outs). Syntactically this looks like an insertion operation,
but semantically it does an arbitrary operation rather than converting manip to a
sequence of characters as do the insertion operators. Predefined manipulators are
described below.
287

ostream
Positioning functions

outsp=&ins.seekp(off,dir)

Repositions outs.rdbuf()’s put pointer. See streambuf – public on page 298 for a
discussion of positioning.

outsp=&outs.seekp(pos)

Repositions outs.rdbuf()’s put pointer. See streambuf – public on page 298 for a
discussion of positioning.

pos=outs.tellp()

The current position of outs.rdbuf()’s put pointer. See streambuf – public on
page 298 for a discussion of positioning.

Manipulators

outs<<endl

Ends a line by inserting a newline character and flushing.

outs<<ends

Ends a string by inserting a null (0) character.

outs<<flush

Flushes outs.

outs<<dec

Sets the conversion base format flag to 10. See ios on page 261.

outs<<hex

Sets the conversion base format flag to 16. See ios on page 261.

outs<<oct

Sets the conversion base format flag to 8. See ios on page 261.

See also

ios (page 261), streambuf – public (page 298), manipulators (page 279)
288

The Streams library
stdiobuf

stdiobuf – iostream specialised to stdio FILE

Synopsis

#include <iostream.h>
#include <stdiostream.h>
#include <stdio.h>

class stdiobuf : public streambuf {
stdiobuf(FILE* f);

FILE* stdiofile();
};

Description

Operations on a stdiobuf are reflected on the associated FILE. A stdiobuf is
constructed in unbuffered mode, which causes all operations to be reflected
immediately in the FILE. seekg()s and seekp()s are translated into
fseek()s. setbuf() has its usual meaning; if it supplies a reserve area,
buffering will be turned back on.

Caveats

stdiobuf is intended to be used when mixing C and C++ code. New C++ code
should prefer to use filebufs, which have better performance.

See also

filebuf (page 253), istream (page 272), ostream (page 283), streambuf – public (page 298)
289

streambuf – protected
streambuf – protected

streambuf – interface for derived classes

Synopsis

#include <iostream.h>

typedef long streamoff, streampos;
class ios {
public:

enum seek_dir { beg, cur, end };
enum open_mode { in, out, ate, app, trunc, nocreate, noreplace } ;
// and lots of other stuff; see ios on page 261

} ;

class streambuf {
public:

streambuf() ;
streambuf(char* p, int len);

void dbp() ;

protected:
int allocate();
char* base();
int blen();
char* eback();
char* ebuf();
char* egptr();
char* epptr();
void gbump(int n);
char* gptr();
char* pbase();
void pbump(int n);
char* pptr();
void setg(char* eb, char* g, char* eg);
void setp(char* p, char* ep);
void setb(char* b, char* eb, int a=0);
int unbuffered();
void unbuffered(int);

virtual int doallocate();
virtual ~streambuf() ;
290

The Streams library
public:
virtual int pbackfail(int c);
virtual int overflow(int c=EOF);
virtual int underflow();
virtual streambuf*

setbuf(char* p, int len);
virtual streampos

seekpos(streampos, int =ios::in|ios:out);
virtual streampos

seekoff(streamoff, seek_dir, int =ios::in|ios:out);
virtual int sync();

};

Description

streambufs implement the buffer abstraction described in streambuf – public on
page 298. However, the streambuf class itself contains only basic members for
manipulating the characters and normally a class derived from streambuf will be
used. This section describes the interface needed by programmers who are coding
a derived class. Broadly speaking there are two kinds of member functions
described here. The non-virtual functions are provided for manipulating a
streambuf in ways that are appropriate in a derived class. Their descriptions
reveal details of the implementation that would be inappropriate in the public
interface. The virtual functions permit the derived class to specialise the
streambuf class in ways appropriate to the specific sources and sinks that it is
implementing. The descriptions of the virtual functions explain the obligations of
the virtuals of the derived class. If the virtuals behave as specified, the streambuf
will behave as specified in the public interface. However, if the virtuals do not
behave as specified, then the streambuf may not behave properly, and an
iostream (or any other code) that relies on proper behaviour of the streambuf
may not behave properly either.

In the following descriptions assume:

● sb is a streambuf*.

● i and n are ints.

● ptr, b, eb, p, ep, eb, g, and eg are char*s.

● c is an int character (positive or EOF)).

● pos is a streampos. (See streambuf – public on page 298.)

● off is a streamoff.

● dir is a seekdir.

● mode is an int representing an open_mode.
291

streambuf – protected
Constructors

streambuf()

Constructs an empty buffer corresponding to an empty sequence.

streambuf(b,len)

Constructs an empty buffer and then sets up the reserve area to be the len bytes
starting at b.

The Get, Put, and Reserver area

The protected members of streambuf present an interface to derived classes
organised around three areas (arrays of bytes) managed cooperatively by the base
and derived classes. They are the get area, the put area, and the reserve area (or buffer).
The get and the put areas are normally disjoint, but they may both overlap the
reserve area, whose primary purpose is to be a resource in which space for the put
and get areas can be allocated. The get and the put areas are changed as characters
are put into and got from the buffer, but the reserve area normally remains fixed.
The areas are defined by a collection of char* values. The buffer abstraction is
described in terms of pointers that point between characters, but the char*
values must point at chars. To establish a correspondence the char* values
should be thought of as pointing just before the byte they really point at.

Functions to examine the pointers

ptr=sb->base()

Returns a pointer to the first byte of the reserve area. Space between sb->base()
and sb->ebuf() is the reserve area.

ptr=sb->eback()

Returns a pointer to a lower bound on sb->gptr(). Space between
sb->eback() and sb->gptr() is available for putback.

ptr=sb->ebuf()

Returns a pointer to the byte after the last byte of the reserve area.

ptr=sb->egptr()

Returns a pointer to the byte after the last byte of the get area.

ptr=sb->epptr()

Returns a pointer to the byte after the last byte of the put area.
292

The Streams library
ptr=sb->gptr()

Returns a pointer to the first byte of the get area. The available characters are those
between sb->gptr() and sb->egptr(). The next character fetched will be
*sb->gptr()) unless sb->egptr() is less than or equal to sb->gptr().

ptr=sb->pbase()

Returns a pointer to the put area base. Characters between sb->pbase() and
sb->pptr() have been stored into the buffer and not yet consumed.

ptr=sb->pptr()

Returns a pointer to the first byte of the put area. The space between sb->pptr()
and sb->epptr() is the put area and characters will be stored here.

Functions for setting the pointers

Note that to indicate that a particular area (get, put, or reserve) does not exist, all
the associated pointers should be set to zero.

sb->setb(b, eb, i)

Sets base() and ebuf() to b and eb respectively. i controls whether the area
will be subject to automatic deletion. If i is non-zero, then b will be deleted when
base is changed by another call of setb(), or when the destructor is called for
*sb. If b and eb are both null then we say that there is no reserve area. If b is
non-null, there is a reserve area even if eb is less than b and so the reserve area
has zero length.

sb->setp(p, ep)

Sets pptr() to p, pbase() to p, and epptr() to ep.

sb->setg(eb, g, eg)

Sets eback() to eb, gptr() to g, and egptr() to eg.
293

streambuf – protected
Other non-virtual members

i=sb->allocate()

Tries to set up a reserve area. If a reserve area already exists or if
sb->unbuffered() is non-zero, allocate() returns 0 without doing
anything. If the attempt to allocate space fails, allocate() returns EOF,
otherwise (i.e. allocation succeeds) allocate() returns 1. allocate() is not
called by any non-virtual member function of streambuf.

i=sb->blen()

Returns the size (in chars) of the current reserve area.

dbp()

Writes directly on file descriptor 1 information in ASCII about the state of the
buffer. It is intended for debugging and nothing is specified about the form of the
output. It is considered part of the protected interface because the information it
prints can only be understood in relation to that interface, but it is a public
function so that it can be called anywhere during debugging.

sb->gbump(n)

Increments gptr() by n which may be positive or negative. No checks are made
on whether the new value of gptr() is in bounds.

sb->pbump(n)

Increments pptr() by n which may be positive or negative. No checks are made
on whether the new value of pptr() is in bounds.

sb->unbuffered(i)
i=sb->unbuffered()

There is a private variable known as sb’s buffering state. sb->unbuffered(i)
sets the value of this variable to i and sb->unbuffered() returns the current
value. This state is independent of the actual allocation of a reserve area. Its
primary purpose is to control whether a reserve area is allocated automatically by
allocate.
294

The Streams library
Virtual member functions

Virtual functions may be redefined in derived classes to specialise the behaviour of
streambufs. This section describes the behaviour that these virtual functions
should have in any derived classes; the next section describes the behaviour that
these functions are defined to have in base class streambuf.

i=sb->doallocate()

Is called when allocate() determines that space is needed. doallocate() is
required to call setb() to provide a reserve area or to return EOF if it cannot. It is
only called if sb->unbuffered() is zero and sb->base() is zero.

i=overflow(c)

Is called to consume characters. If c is not EOF, overflow() also must either
save c or consume it. Usually it is called when the put area is full and an attempt is
being made to store a new character, but it can be called at other times. The
normal action is to consume the characters between pbase() and pptr(), call
setp() to establish a new put area, and if c!=EOF store it (using sputc()).
sb->overflow() should return EOF to indicate an error; otherwise it should
return something else.

i=sb->pbackfail(c)

Is called when eback() equals gptr() and an attempt has been made to
putback c. If this situation can be dealt with (e.g. by repositioning an external file),
pbackfail() should return c; otherwise it should return EOF.

pos=sb->seekoff(off, dir, mode)

Repositions the get and/or put pointers (i.e. the abstract get and put pointers, not
pptr() and gptr()). The meanings of off and dir are discussed in streambuf –
public on page 298. mode specifies whether the put pointer (ios::out bit set) or
the get pointer (ios::in bit set) is to be modified. Both bits may be set in which
case both pointers should be affected. A class derived from streambuf is not
required to support repositioning. seekoff() should return EOF if the class does
not support repositioning. If the class does support repositioning, seekoff()
should return the new position or EOF on error.

pos=sb->seekpos(pos, mode)

Repositions the streambuf get and/or put pointer to pos. mode specifies which
pointers are affected as for seekoff(). Returns pos (the argument) or EOF if the
class does not support repositioning or an error occurs.
295

streambuf – protected
sb=sb->setbuf(ptr, len)

Offers the array at ptr with len bytes to be used as a reserve area. The normal
interpretation is that if ptr or len are zero then this is a request to make the sb
unbuffered. The derived class may use this area or not as it chooses. It may accept
or ignore the request for unbuffered state as it chooses. setbuf() should return
sb if it honours the request. Otherwise it should return 0.

i=sb->sync()

Is called to give the derived class a chance to look at the state of the areas, and
synchronise them with any external representation. Normally sync() should
consume any characters that have been stored into the put area, and if possible
give back to the source any characters in the get area that have not been fetched.
When sync() returns there should not be any unconsumed characters, and the
get area should be empty. sync() should return EOF if some kind of failure
occurs.

i=sb->underflow()

Is called to supply characters for fetching, i.e. to create a condition in which the get
area is not empty. If it is called when there are characters in the get area it should
return the first character. If the get area is empty, it should create a non-empty get
area and return the next character (which it should also leave in the get area). If
there are no more characters available, underflow() should return EOF and
leave an empty get area.

The default definitions of the virtual functions:

i=sb->streambuf::doallocate()

Attempts to allocate a reserve area using operator new.

i=sb->streambuf::overflow(c)

streambuf::overflow() should be treated as if it had undefined behaviour.
That is, derived classes should always define it.

i=sb->streambuf::pbackfail(c)

Returns EOF.

pos=sb->streambuf::seekpos(pos, mode)

Returns sb->seekoff(streamoff(pos),ios::beg,mode). Thus to define
seeking in a derived class, it is frequently only necessary to define seekoff() and
use the inherited streambuf::seekpos().
296

The Streams library
pos=sb->streambuf::seekoff(off, dir, mode)

Returns EOF.

sb=sb->streambuf::setbuf(ptr, len)

Will honour the request when there is no reserve area.

i=sb->streambuf::sync()

Returns 0 if the get area is empty and there are no unconsumed characters.
Otherwise it returns EOF.

i=sb->streambuf::underflow()

Is compatible with the old stream package, but that behaviour is not considered
part of the specification of the iostream package. Therefore,
streambuf::underflow() should be treated as if it had undefined behaviour.
That is, it should always be defined in derived classes.

See also

streambuf – public (page 298), ios (page 261), istream (page 272), ostream (page 283)
297

streambuf – public
streambuf – public

streambuf – public interface of character buffering class

Synopsis

#include <iostream.h>

typedef long streamoff, streampos;
class ios {
public:

enum seek_dir { beg, cur, end };
enum open_mode { in, out, ate, app, trunc, nocreate, noreplace } ;
// and lots of other stuff; see ios on page 261

} ;

class streambuf {
public :

int in_avail();
int out_waiting();
int sbumpc();
streambuf* setbuf(char* ptr, int len);
streampos seekpos(streampos, int =ios::in|ios::out);
streampos seekoff(streamoff, seek_dir, int =ios::in|ios::out);
int sgetc();
int sgetn(char* ptr, int n);
int snextc();
int sputbackc(char);
int sputc(int c);
int sputn(const char* s, int n);
void stossc();
virtual int sync();

};

Description

The streambuf class supports buffers into which characters can be inserted (put)
or from which characters can be fetched (got). Abstractly, such a buffer is a
sequence of characters together with one or two pointers (a get and/or a put
pointer) that define the location at which characters are to be inserted or fetched.
The pointers should be thought of as pointing between characters rather than at
them. This makes it easier to understand the boundary conditions (a pointer
before the first character or after the last). Some of the effects of getting and
putting are defined by this class but most of the details are left to specialised
classes derived from streambuf. (See filebuf on page 253, strstreambuf on page 306,
and stdiobuf on page 289.)
298

The Streams library
Classes derived from streambuf vary in their treatments of the get and put
pointers. The simplest are unidirectional buffers which permit only gets or only
puts. Such classes serve as pure sources (producers) or sinks (consumers) of
characters. Queuelike buffers (e.g. see strstream on page 303 and strstreambuf on
page 306) have a put and a get pointer which move independently of each other. In
such buffers characters that are stored are held (i.e. queued) until they are later
fetched. Filelike buffers (e.g. filebuf, see filebuf on page 253) permit both gets
and puts but have only a single pointer. (An alternative description is that the get
and put pointers are tied together so that when one moves so does the other.)

Most streambuf member functions are organised into two phases. As far as
possible, operations are performed inline by storing into or fetching from arrays
(the get area and the put area, which together form the reserve area, or buffer). From
time to time, virtual functions are called to deal with collections of characters in
the get and put areas. That is, the virtual functions are called to fetch more
characters from the ultimate producer or to flush a collection of characters to the
ultimate consumer. Generally the user of a streambuf does not have to know
anything about these details, but some of the public members pass back
information about the state of the areas. Further detail about these areas is
provided in streambuf – protected on page 290, which describes the protected
interface.

The public member functions of the streambuf class are described below. In the
following descriptions assume:

● i, n, and len are ints.

● c is an int. It always holds a ‘character’ value or EOF. A ‘character’ value is
always positive even when char is normally sign extended.

● sb and sb1 are streambuf*s.

● ptr is a char*.

● off is a streamoff.

● pos is a streampos.

● dir is a seek_dir.

● mode is an int representing an open_mode.
299

streambuf – public
Public member functions:

i=sb->in_avail()

Returns the number of characters that are immediately available in the get area for
fetching. i characters may be fetched with a guarantee that no errors will be
reported.

i=sb->out_waiting()

Returns the number of characters in the put area that have not been consumed (by
the ultimate consumer.

c=sb->sbumpc()

Moves the get pointer forward one character and returns the character it moved
past. Returns EOF if the get pointer is currently at the end of the sequence.

pos=sb->seekoff(off, dir, mode)

Repositions the get and/or put pointers. mode specifies whether the put pointer
(ios::out bit set) or the get pointer (ios::in bit set) is to be modified. Both
bits may be set in which case both pointers should be affected. off is interpreted
as a byte offset. (Notice that it is a signed quantity.) The meanings of possible
values of dir are

ios::beg The beginning of the stream.

ios::cur The current position.

ios::end The end of the stream (end of file.)

Not all classes derived from streambuf support repositioning. seekoff() will
return EOF if the class does not support repositioning. If the class does support
repositioning, seekoff() will return the new position or EOF on error.

pos=sb->seekpos(pos, mode)

Repositions the streambuf get and/or put pointer to pos. mode specifies which
pointers are affected as for seekoff(). Returns pos (the argument) or EOF if the
class does not support repositioning or an error occurs. In general a streampos
should be treated as a ‘magic cookie’ and no arithmetic should be performed on it.
Two particular values have special meaning:

streampos(0) The beginning of the file.

streampos(EOF) Used as an error indication.
300

The Streams library
c=sb->sgetc()

Returns the character after the get pointer. Contrary to what most people expect
from the name it does not move the get pointer. Returns EOF if there is no
character available.

sb1=sb->setbuf(ptr, len, i)

Offers the len bytes starting at ptr as the reserve area. If ptr is null or len is
zero or less, then an unbuffered state is requested. Whether the offered area is
used, or a request for unbuffered state is honoured depends on details of the
derived class. setbuf() normally returns sb, but if it does not accept the offer or
honour the request, it returns 0.

i=sb->sgetn(ptr, n)

Fetches the n characters following the get pointer and copies them to the area
starting at ptr. When there are fewer than n characters left before the end of the
sequence sgetn() fetches whatever characters remain. sgetn() repositions the
get pointer following the fetched characters and returns the number of characters
fetched.

c=sb->snextc()

Moves the get pointer forward one character and returns the character following
the new position. It returns EOF if the pointer is currently at the end of the
sequence or is at the end of the sequence after moving forward.

i=sb->sputbackc(c)

Moves the get pointer back one character. c must be the current content of the
sequence just before the get pointer. The underlying mechanism may simply back
up the get pointer or may rearrange its internal data structures so the c is saved.
Thus the effect of sputbackc() is undefined if c is not the character before the
get pointer. sputbackc() returns EOF when it fails. The conditions under which
it can fail depend on the details of the derived class.

i=sb->sputc(c)

Stores c after the put pointer, and moves the put pointer past the stored character;
usually this extends the sequence. It returns EOF when an error occurs. The
conditions that can cause errors depend on the derived class.

i=sb->sputn(ptr, n)

Stores the n characters starting at ptr after the put pointer and moves the put
pointer past them. sputn() returns i, the number of characters stored
successfully. Normally i is n, but it may be less when errors occur.
301

streambuf – public
sb->stossc()

Moves the get pointer forward one character. If the pointer started at the end of the
sequence this function has no effect.

i=sb->sync()

Establishes consistency between the internal data structures and the external
source or sink. The details of this function depend on the derived class. Usually
this ‘flushes’ any characters that have been stored but not yet consumed, and
‘gives back’ any characters that may have been produced but not yet fetched.
sync() returns EOF to indicate errors.

See also

ios (page 261), istream (page 272), ostream (page 283), streambuf – protected (page 290)
302

The Streams library
strstream

strstream – iostream specialised to arrays

Synopsis

#include <strstream.h>

class ios {
public:

enum open_mode { in, out, ate, app, trunc, nocreate, noreplace } ;
// and lots of other stuff; see ios on page 261

} ;

class istrstream : public istream {
public:

istrstream(char*) ;
istrstream(char*, int) ;

strstreambuf* rdbuf() ;
} ;

class ostrstream : public ostream {
public:

ostrstream();
ostrstream(char*, int, int=ios::out) ;

int pcount() ;
strstreambuf* rdbuf() ;
char* str();

};

class strstream : public strstreambase, public iostream {
public:

strstream();
strstream(char*, int, int mode);

strstreambuf* rdbuf() ;
char* str();

};

Description

strstream specialises iostream for ‘incore’ operations, that is, storing and
fetching from arrays of bytes. The streambuf associated with a strstream is a
strstreambuf (see strstreambuf on page 306).

In the following descriptions assume:

● ss is a strstream.

● iss is an istrstream.

● oss is an ostrstream.
303

strstream
● cp is a char*.

● mode is an int representing an open_mode.

● i and len are ints.

● ssb is a strstreambuf*.

Constructors

istrstream(cp)

Characters will be fetched from the (null-terminated) string cp. The terminating
null character will not be part of the sequence. Seeks (istream::seekg()) are
allowed within that space.

istrstream(cp, len)

Characters will be fetched from the array beginning at cp and extending for len
bytes. Seeks (istream::seekg()) are allowed anywhere within that array.

ostrstream()

Space will be dynamically allocated to hold stored characters.

ostrstream(cp,n,mode)

Characters will be stored into the array starting at cp and continuing for n bytes. If
ios::ate or ios::app is set in mode, cp is assumed to be a null-terminated
string and storing will begin at the null character. Otherwise storing will begin at
cp. Seeks are allowed anywhere in the array.

strstream()

Space will be dynamically allocated to hold stored characters.

strstream(cp,n,mode)

Characters will be stored into the array starting at cp and continuing for n bytes. If
ios::ate or ios::app is set in mode, cp is assumed to be a null-terminated
string and storing will begin at the null character. Otherwise storing will begin at
cp. Seeks are allowed anywhere in the array.

istrstream members

ssb = iss.rdbuf()

Returns the strstreambuf associated with iss.
304

The Streams library
ostrstream members

ssb = oss.rdbuf()

Returns the strstreambuf associated with oss.

cp=oss.str()

Returns a pointer to the array being used and ‘freezes’ the array. Once str has
been called the effect of storing more characters into oss is undefined. If oss was
constructed with an explicit array, cp is just a pointer to the array. Otherwise, cp
points to a dynamically allocated area. Until str is called, deleting the
dynamically allocated area is the responsibility of oss. After str returns, the array
becomes the responsibility of the user program.

i=oss.pcount()

Returns the number of bytes that have been stored into the buffer. This is mainly of
use when binary data has been stored and oss.str() does not point to a null
terminated string.

strstream members

ssb = ss.rdbuf()

Returns the strstreambuf associated with ss.

cp=ss.str()

Returns a pointer to the array being used and ‘freezes’ the array. Once str has
been called the effect of storing more characters into ss is undefined. If ss was
constructed with an explicit array, cp is just a pointer to the array. Otherwise, cp
points to a dynamically allocated area. Until str is called, deleting the
dynamically allocated area is the responsibility of ss. After str returns, the array
becomes the responsibility of the user program.

See also

strstreambuf (page 306), ios (page 261), istream (page 272), ostream (page 283)
305

strstreambuf
strstreambuf

strstreambuf – streambuf specialised to arrays

Synopsis

#include <iostream.h>
#include <strstream.h>

class strstreambuf : public streambuf {
public:

strstreambuf() ;
strstreambuf(char*, int, char*);
strstreambuf(int);
strstreambuf(unsigned char*, int, unsigned char*);
strstreambuf(void* (*a)(long), void(*f)(void*));

void freeze(int n=1) ;
char* str();
virtual streambuf* setbuf(char*, int)

};

Description

A strstreambuf is a streambuf that uses an array of bytes (a string) to hold
the sequence of characters. Given the convention that a char* should be
interpreted as pointing just before the char it really points at, the mapping
between the abstract get/put pointers (see streambuf – public on page 298) and
char* pointers is direct. Moving the pointers corresponds exactly to incrementing
and decrementing the char* values.

To accommodate the need for arbitrary length strings strstreambuf supports a
dynamic mode. When a strstreambuf is in dynamic mode, space for the
character sequence is allocated as needed. When the sequence is extended too far,
it will be copied to a new array.

In the following descriptions assume:

● ssb is a strstreambuf*.

● n is an int.

● ptr and pstart are char*s or unsigned char*s.

● a is a void* (*)(long).

● f is a void* (*)(void*).
306

The Streams library
Constructors

strstreambuf()

Constructs an empty strstreambuf in dynamic mode. This means that space
will be automatically allocated to accommodate the characters that are put into
the strstreambuf (using operators new and delete). Because this may require
copying the original characters, it is recommended that when many characters will
be inserted, the program should use setbuf() (described below) to inform the
strstreambuf.

strstreambuf(a, f)

Constructs an empty strstreambuf in dynamic mode. a is used as the allocator
function in dynamic mode. The argument passed to a will be a long denoting the
number of bytes to be allocated. If a is null, operator new will be used. f is used to
free (or delete) areas returned by a. The argument to f will be a pointer to the array
allocated by a. If f is null, operator delete is used.

strstreambuf(n)

Constructs an empty strstreambuf in dynamic mode. The initial allocation of
space will be at least n bytes.

strstreambuf(ptr, n, pstart)

Constructs a strstreambuf to use the bytes starting at ptr. The
strstreambuf will be in static mode; it will not grow dynamically. If n is positive,
then the n bytes starting at ptr are used as the strstreambuf. If n is zero, ptr
is assumed to point to the beginning of a null terminated string and the bytes of
that string (not including the terminating null character) will constitute the
strstreambuf. If n is negative, the strstreambuf is assumed to continue
indefinitely. The get pointer is initialised to ptr. The put pointer is initialised to
pstart. If pstart is null, then stores will be treated as errors. If pstart is
non-null, then the initial sequence for fetching (the get area) consists of the bytes
between ptr and pstart. If pstart is null, then the initial get area consists of
the entire array.
307

strstreambuf
Member functions

ssb->freeze(n)

Inhibits (when n is non-zero) or permits (when n is zero) automatic deletion of the
current array. Deletion normally occurs when more space is needed or when ssb is
being destroyed. Only space obtained via dynamic allocation is ever freed. It is an
error (and the effect is undefined) to store characters into a strstreambuf that
was in dynamic allocation mode and is now frozen. It is possible, however, to thaw
(unfreeze) such a strstreambuf and resume storing characters.

ptr=ssb->str()

Returns a pointer to the first char of the current array and freezes ssb. If ssb was
constructed with an explicit array, ptr will point to that array. If ssb is in dynamic
allocation mode, but nothing has yet been stored, ptr may be null.

ssb->setbuf(0,n)

ssb remembers n and the next time it does a dynamic mode allocation, it makes
sure that at least n bytes are allocated.

See also

streambuf – public (page 298), strstream (page 303)
308

14 The Complex Math library

he Complex Math library is a part of the C++ library, ported from that supplied

with AT&T’s CFront product.T
309

Introduction
Introduction

complex – introduction to C++ complex mathematics library

Synopsis

#include <complex.h>
class complex;

Description

This section describes complex mathematics functions and operators found in the
C++ Library.

The Complex Mathematics library implements the data type of complex numbers
as a class, complex. It overloads the standard input, output, arithmetic,
assignment, and comparison operators, discussed in complex operators on page 318.
It also overloads the standard exponential, logarithm, power, and square root
functions, discussed in exp, log, pow, sqrt on page 316, and the trigonometric
functions of sine, cosine, hyperbolic sine, and hyperbolic cosine, discussed in
cplxtrig on page 321, for the class complex. Routines for converting between
Cartesian and polar coordinate systems are discussed in cartesian/polar on page 311.
Error handling is described in complex_error on page 313.

Diagnostics

Functions in the Complex Mathematics Library may return the conventional values
(0, 0), (0, ±HUGE), (±HUGE, 0), or (±HUGE, ±HUGE), when the function
is undefined for the given arguments or when the value is not representable. (HUGE
is the largest-magnitude single-precision floating-point number and is defined in
the file <math.h>. The header file <math.h> is included in the file
<complex.h>.) In these cases, the external variable errno is set to the value
EDOM or ERANGE.

See also

cartesian/polar (page 311), complex_error (page 313), complex operators (page 318), exp,
log, pow, sqrt (page 316), cplxtrig (page 321).
310

The Complex Math library
cartesian/polar

cartesian/polar – functions for the C++ Complex Math Library

Synopsis

#include <complex.h>

class complex {

public:

friend double abs(complex);
friend double arg(complex);
friend complex conj(complex);
friend double imag(complex);
friend double norm(complex);
friend complex polar(double, double = 0);
friend double real(complex);

};

Description

The following functions are defined for complex, where:

● d, m, and a are of type int

● x and y are of type complex.

d = abs(x)

Returns the absolute value or magnitude of x.

d = norm(x)

Returns the square of the magnitude of x. It is faster than abs, but more likely to
cause an overflow error. It is intended for comparison of magnitudes.

d = arg(x)

Returns the angle of x, measured in radians in the range –π to π.

y = conj(x)

Returns the complex conjugate of x. That is, if x is (real, imag), then
conj(x) is (real, -imag).
311

cartesian/polar
y = polar(m, a)

Creates a complex given a pair of polar coordinates, magnitude m, and angle a,
measured in radians.

d = real(x)

Returns the real part of x.

d = imag(x)

Returns the imaginary part of x.

See also

Introduction (page 310), complex_error (page 313), complex operators (page 318), exp, log,
pow, sqrt (page 316), cplxtrig (page 321)
312

The Complex Math library
complex_error

complex_error – error-handling function for the C++ Complex Math Library

Synopsis

#include <complex.h>

class c_exception
{

int type;
char *name;
complex arg1;
complex arg2;
complex retval;

public:

c_exception(char *n, const complex& a1,
const complex& a2 = complex_zero);

friend int complex_error(c_exception&);

friend complex exp(complex);
friend complex sinh(complex);
friend complex cosh(complex);
friend complex log(complex);

};

Description

In the following description of the complex error handling routine:

● i is of type int

● x is of type c_exception.

i = complex_error(x)

Invoked by functions in the C++ Complex Mathematics Library when errors are
detected.

Users may define their own procedures for handling errors, by defining a function
named complex_error in their programs. complex_error must be of the
form described above.
313

complex_error
The element type is an integer describing the type of error that has occurred, from
the following list of constants (defined in the header file):

SING argument singularity
OVERFLOW overflow range error
UNDERFLOW underflow range error

The element name points to a string containing the name of the function that
incurred the error. The variables arg1 and arg2 are the arguments with which the
function was invoked. retval is set to the default value that will be returned by
the function unless the user’s complex_error sets it to a different value.

If the user’s complex_error function returns non-zero, no error message will be
printed, and errno will not be set.

If complex_error is not supplied by the user, the default error-handling
procedures, described with the complex math functions involved, will be invoked
upon error. These procedures are also summarised in the table below. In every
case, errno is set to EDOM or ERANGE and the program continues.

Note that complex math functions call functions included in the math library
which has its own error handling routine, matherr. Users may also override this
routine by supplying their own version.

Key: M Message is printed (EDOM error)
(H, 0) (HUGE, 0) is returned
(±H, ±H) (±HUGE, ±HUGE) is returned
(0, 0) (0, 0) is returned

Default error handling procedures

Types of Errors

type SING OVERFLOW UNDERFLOW

errno EDOM ERANGE ERANGE

EXP
real too large/small — (±H, ±H) (0, 0)

imag too large — (0, 0) —

LOG arg = (0, 0) M, (H, 0) — —

SINH
real too large — (±H, ±H) —

imag too large — (0, 0) —

COSH
real too large — (±H, ±H) —

imag too large — (0, 0) —
314

The Complex Math library
See also

Introduction (page 310), cartesian/polar (page 311), complex operators (page 318), exp, log,
pow, sqrt (page 316), cplxtrig (page 321)
315

exp, log, pow, sqrt
exp, log, pow, sqrt

exp, log, pow, sqrt – exponential, logarithm, power, square root functions for the
C++ complex library

Synopsis

#include <complex.h>

class complex {

public:
friend complex exp(complex);
friend complex log(complex);
friend complex pow(double, complex);
friend complex pow(complex, int);
friend complex pow(complex, double);
friend complex pow(complex, complex);
friend complex sqrt(complex);

};

Description

The following math functions are overloaded by the complex library, where:

● x, y, and z are of type complex.

z = exp(x)

Returns ex.

z = log(x)

Returns the natural logarithm of x.

z = pow(x, y)

Returns xy

z = sqrt(x)

Returns the square root of x, contained in the first or fourth quadrants of the
complex plane.
316

The Complex Math library
Diagnostics

exp returns (0, 0) when the real part of x is so small, or the imaginary part is so
large, as to cause overflow. When the real part is large enough to cause overflow,
exp returns (HUGE, HUGE) if the cosine and sine of the imaginary part of x are
positive, (HUGE, -HUGE) if the cosine is positive and the sine is not, (-HUGE,
HUGE) if the sine is positive and the cosine is not, and (-HUGE, -HUGE) if
neither sine nor cosine is positive. In all these cases, errno is set to ERANGE.

log returns (-HUGE, 0) and sets errno to EDOM when x is (0, 0). A message
indicating SING error is printed on the standard error output.

These error-handling procedures may be changed with the function
complex_error (see page 313).

See also

Introduction (page 310), cartesian/polar (page 311), complex_error (page 313), complex
operators (page 318), cplxtrig (page 321)
317

complex operators
complex operators

complex_operators: operators for the C++ complex math library

Synopsis

#include <complex.h>

class complex {

public:
friend complex operator+(complex, complex);
friend complex operator–(complex);
friend complex operator–(complex, complex);
friend complex operator*(complex, complex);
friend complex operator/(complex, complex);

friend int operator==(complex, complex);
friend int operator!=(complex, complex);

void operator+=(complex);
void operator–=(complex);
void operator*=(complex);
void operator/=(complex);

};

Description

The basic arithmetic operators, comparison operators, and assignment operators
are overloaded for complex numbers. The operators have their conventional
precedences. In the following descriptions for complex operators:

● x, y, and z are of type complex.

Arithmetic operators:

z = x + y

Returns a complex which is the arithmetic sum of complex numbers x and y.

z = -x

Returns a complex which is the arithmetic negation of complex number x.

z = x - y

Returns a complex which is the arithmetic difference of complex numbers x and
y.
318

The Complex Math library
z = x * y

Returns a complex which is the arithmetic product of complex numbers x and y.

z = x / y

Returns a complex which is the arithmetic quotient of complex numbers x and y.

Comparison operators

x == y

Returns non-zero if complex number x is equal to complex number y; returns 0
otherwise.

x != y

Returns non-zero if complex number x is not equal to complex number y; returns
0 otherwise.

Assignment operators

x += y

Complex number x is assigned the value of the arithmetic sum of itself and
complex number y.

x -= y

Complex number x is assigned the value of the arithmetic difference of itself and
complex number y.

x *= y

Complex number x is assigned the value of the arithmetic product of itself and
complex number y.

x /= y

Complex number x is assigned the value of the arithmetic quotient of itself and
complex number y.
319

complex operators
Warning

The assignment operators do not produce a value that can be used in an
expression. That is, the following construction is syntactically invalid:

complex x, y, z;
x = (y += z);

whereas:

x = (y + z);

x = (y == z);

are valid.

See also

Introduction (page 310), cartesian/polar (page 311), complex_error (page 313), exp, log,
pow, sqrt (page 316), cplxtrig (page 321)
320

The Complex Math library
cplxtrig

cplxtrig – trigonometric and hyperbolic functions for the C++ complex library

Synopsis

#include <complex.h>

class complex {

public:
friend complexsin(complex);
friend complexcos(complex);

friend complexsinh(complex);
friend complexcosh(complex);

};

Description

The following trigonometric functions are defined for complex, where:

● x and y are of type complex.

y = sin(x)

Returns the sine of x.

y = cos(x)

Returns the cosine of x.

y = sinh(x)

Returns the hyperbolic sine of x.

y = cosh(x)

Returns the hyperbolic cosine of x.

Diagnostics

If the imaginary part of x would cause overflow sinh and cosh return (0, 0).
When the real part is large enough to cause overflow, sinh and cosh return
(HUGE, HUGE) if the cosine and sine of the imaginary part of x are non-negative,
(HUGE, -HUGE) if the cosine is non-negative and the sine is less than 0,
321

cplxtrig
(-HUGE, HUGE) if the sine is non-negative and the cosine is less than 0, and
(-HUGE, –HUGE) if both sine and cosine are less than 0. In all these cases,
errno is set to ERANGE.

These error-handling procedures may be changed with the function
complex_error (see page 313).

See also

Introduction (page 310), cartesian/polar (page 311), complex_error (page 313), complex
operators (page 318), exp, log, pow, sqrt (page 316)
322

Part 4 – Developing software for RISC OS
323

324

15 Portability

he C programming language has gained a reputation for being portable across

machines, while still providing capabilities at a machine-specific level. The fact

that a program is written in C by no means indicates the effort required to port
software from one machine to another, or indeed from one compiler to another.
Obviously the most time-consuming task is porting between two entirely different
hardware environments, running different operating systems with different
compilers. Since many users of the Acorn C compiler will find themselves in this
situation, this chapter deals with a number of issues you should be aware of when
porting software to or from our environment. The chapter covers the following:

● general portability considerations

● major differences between ISO C and the well-known ‘K&R’ C as defined in the
book The C Programming Language, (first edition) by Kernighan and Ritchie

● using the Acorn C compiler in ‘pcc’ compatibility mode

● environmental aspects of portability.

General portability considerations

If you intend your code to be used on a variety of different systems, there are
certain aspects which you should bear in mind in order to make porting an easy
and relatively error-free process. It is essential to single out items which may make
software system-specific, and to employ techniques to avoid non-portable use of
such items. In this section, we describe general portability issues for C programs.

Fundamental data types

The size of fundamental data types such as char, int, long int, short int
and float will depend mainly on the underlying architecture of the machine on
which the C program is to run. Compiler writers usually implement these types in a
manner which best fits the architectures of machines for which their compilers are
targeted. For example, Release 5 of the Microsoft C Compiler has int, short
int and long int occupying 2, 2 and 4 bytes respectively, where the Acorn C
Compiler uses 4, 2 and 4 bytes. Certain relations are guaranteed by the ISO C
Standard (such as the fact that the size of long int is at least that of short
int), but code which makes any assumptions regarding implementation-defined
issues such as whether int and long int are the same size will not be
maximally portable.

T

325

General portability considerations
A common non-portable assumption is embedded in the use of hexadecimal
constant values. For example:

 int i;
 i = i & 0xfffffff8; /* set bottom 3 bits to zero, assuming 32-bit int */

Such non-portability can be avoided by using:

 int i;
 i = i & ~0x07; /* set bottom 3 bits to zero, whatever sizeof(int) */

If you find that some size assumptions are inevitable, it is best to use the specific
width integer types defined in stdint.h (see page 159). If you need compatibility
with versions of C prior to C99 (where stdint.h is not available) at least use a
series of assert calls when the program starts up, to indicate any conditions
under which successful operation is not guaranteed. Alternatively, write macros for
frequently-used operations so that size assumptions are localised and can be
altered locally.

Byte ordering

A highly non-portable feature of many C programs is the implicit or explicit
exploitation of byte ordering within a word of store. Such assumptions tend to
arise when copying objects word by word (rather than byte by byte), when inputting
and outputting binary values, and when extracting bytes from or inserting bytes
into words using a mix of shift-and-mask and byte addressing. A contrived example
is the following code which copies individual bytes from an int variable w into an
int variable pointed to by p, until a null byte is encountered. The code assumes
that w does contain a null byte.

int a;
char *p = (char *)&a;
int w = AN_ARBITRARY_VALUE;

for (;;)
{
 if ((*p++ = w) == 0) break;
 w >>= 8;
}

This code will only work on a machine with even (or little-endian) byte-sex, and so
is not portable. The best solution to such problems is either to write code which
does not rely on byte-sex, or to have different code to deal appropriately with
different byte-sex and to compile the correct variant conditionally, depending on
your target machine architecture.
326

Portability
Store alignment

The only guarantee given in the ISO C Standard regarding alignment of members of
a struct, is that a ‘hole’ (caused by padding) cannot exist at the beginning of the
struct. The values of ‘holes’ created by alignment restrictions are undefined, and
you should not make assumptions about these values. In particular, two structures
with identical members, each having identical values, will only be considered
equal if field-by-field comparison is used; a byte-by-byte, or word-by-word
comparison may not indicate equality.

This may also have implications on the size requirements of large arrays of
structs. Given the following declarations:

#define ARRSIZE 10000
typedef struct

{
 int i;
 short s;

} ELEM;
ELEM arr[ARRSIZE];

this may require significantly different amounts of store under, say, a compiler
which aligns ints on even boundaries, as opposed to one which aligns them on
word boundaries.

Pointers and pointer arithmetic

A deficiency of the original definition of C, and of its subsequent use, has been the
relatively unrestrained interchanging between pointers to different data types and
integers or longs. Much existing code makes the assumption that a pointer can
safely be held in either a long int or int variable. While such an assumption
may indeed be true in many implementations on many machines, it is a highly
non-portable feature on which to rely.

This problem is further compounded when taking the difference of two pointers by
performing a subtraction. When the difference is large, this approach is full of
possible errors. For this purpose, ISO C defines a type ptrdiff_t, which is
capable of reliably storing the result of subtracting two pointer values of the same
type; a typical use of this mechanism would be to apply it to pointers into the same
array. Furthermore, ISO C99 and later ISO standards define uintptr_t and
intptr_t in stdint.h, which are integers of the correct size to hold pointers for
pointer arithmetic.
327

ISO C vs K&R C
Function argument evaluation

Whilst the evaluation of operands to such operators as && and || is defined to be
strictly left-to-right (including all side-effects), the same does not apply to function
argument evaluation. For example, in the function call f(i, i++);, the issue of
whether the post-increment of i is performed after the first use of i is
implementation-dependent. In any case, this is an unwise form of statement, since
it may be decided later to implement f as a macro, instead of a function.

System-specific code

The direct use of operating system calls is, as you would expect, non-portable. If
you use code which is obviously targeted for a particular environment, then it
should be clearly documented as such, and should preferably be isolated into a
system-specific module, which needs to be modified when porting to a new
machine or operating system. Pathnames of system files should be #defined and
not hard-coded into the program, and, as far as possible, all processing of
filenames should be made easy to modify. Many file operations can be written in
terms of the ISO input/output library functions, which will make an application
more portable. Obviously, binary data files are inherently non-portable, and the
only solution to this problem may be the use of some portable external
representation.

ISO C vs K&R C

The ISO C Standard has succeeded in tightening up many of the vague areas of
K&R C. This results in a much clearer definition of a correct C program. However, if
programs have been written to exploit particular vague features of K&R C, then
their authors may find surprises when porting to an ISO C environment. In the
following sections, we present a list of what we consider to be the major
differences between ISO and K&R C. These differences are at the language level,
and we defer discussion of library differences until a later section. The order in
which this list is presented follows approximately relevant parts of the ISO C
Standard Document.

Lexical elements

The ordering of phases of translation is well-defined. Of special note is the
preprocessor which is conceptually token-based (which does not yield the same
results as might naively be expected from pure text manipulation).
328

Portability
A number of new keywords have been introduced with the following meanings:

● The type qualifier volatile which means that the object may be modified in
ways unknown to the implementation, or have other unknown side effects.
Examples of objects correctly described as volatile include device
registers, semaphores and flags shared with asynchronous signal handlers. In
general, expressions involving volatile objects cannot be optimised by the
compiler.

● The type qualifier const which indicates that a variable’s value should not be
changed.

● The type specifier void to indicate a non-existent value for an expression.

● The type specifier void *, which is a generic pointer to or from which pointer
variables can be assigned, without loss of information.

● The signed type qualifier, to sign any integral types explicitly.

● structs and unions have their own distinct name spaces.

● There is a new floating-point type long double.

● The K&R C practice of using long float to denote double is now outlawed
in ISO C.

● Suffixes U and L (or u and l), can be used to explicitly denote unsigned and
long constants (eg. 32L, 64U, 1024UL etc).

● The use of ‘octal’ constants 8 and 9 (previously defined to be octal 10 and 11
respectively) is no longer supported.

● Literal strings are to be considered as read-only, and identical strings may be
stored as one shared version (as indeed they are, in the Acorn C Compiler). For
example, given:

 char *p1 = "hello";
 char *p2 = "hello";

p1 and p2 will point at the same store location, where the string hello is
held. Programs should not therefore modify literal strings.

● Variadic functions (ie those which take a variable number of arguments) are
declared explicitly using an ellipsis (…). For example, int printf(const
char *fmt, ...);

● Empty comments /**/ are replaced by a single space (use the preprocessor
directive ## to do token-pasting if you previously used /**/ to do this).
329

ISO C vs K&R C
Conversions

ISO C uses value-preserving rules for arithmetic conversions (whereas K&R C
implementations tend to use unsigned-preserving rules). Thus, for example:

int f(int x, unsigned char y)
{
 return (x+y)/2;
}

does signed division, where unsigned-preserving implementations would do
unsigned division.

Aside from value-preserving rules, arithmetic conversions follow those of K&R C,
with additional rules for long double and unsigned long int. It is now also
possible to perform float arithmetic without widening to double.
Floating-point values truncate towards zero when they are converted to integral
types.

It is illegal to attempt to assign function pointers to data pointers and vice versa
(even using explicit casts). The only exception to this is the value 0, as in:

int (*pfi)();
pfi = 0;

Assignment compatibility between structs and unions is now stricter. For
example, consider the following:

struct {char a; int b;} v1;
struct {char a; int b;} v2;
v1 = v2; /* illegal because v1 and v2
 strictly have different types*/

Expressions
● structs and unions may be passed by value as arguments to functions.

● Given a pointer to function declared as, say, int (*pfi)();, then the
function to which it points can be called either by pfi(); or (*pfi)();.

● Due to the use of distinct name spaces for struct and union members
absolute machine addresses must be explicitly cast before being used as
struct and union pointers. For example:

((struct io_space *)0x00ff)->io_buf;
330

Portability
Declarations

Perhaps the greatest impact on C of the ISO Standard has been the adoption of
function prototypes. A function prototype declares the return type and argument
types of a function. For example, int f(int, float); declares a function
returning int with one int and one float argument. This means that a
function’s argument types are part of the type of that function, thus giving the
advantage of stricter argument type-checking, especially across source files. A
function definition (which is also a prototype) is similar except that identifiers
must be given for the arguments. For example, int f(int i, float f);. It is
still possible to use ‘old style’ function declarations and definitions, but you are
advised to convert to the ‘new style’. It is also possible to mix old and new styles of
function declaration. If the function declaration which is in scope is an old style
one, normal integral promotions are performed for integral arguments, and
floats are converted to double. If the function declaration which is in scope is a
new style one, arguments are converted as in normal assignment statements.

Empty declarations are now illegal.

Arrays cannot be defined to have zero or negative size.

Statements
● ISO has defined the minimum attributes of control statements (eg the

minimum number of case limbs which must be supported by a compiler).
These values are almost invariably greater than those supported by PCCs, and
so should not present a problem.

● A value returned from main() is guaranteed to be used as the program’s exit
code.

● Values used in the controlling statement and labels of a switch can be of any
integral type.

Preprocessor
● Preprocessor directives cannot be redefined.

● There is a new ## directive for token-pasting.

● There is a directive # which produces a string literal from its following
characters. This is useful for cases where you want replacement of macro
arguments in strings.
331

The ToPCC and ToANSI tools
● The order of phases of translation is well defined and is as follows for the
preprocessing phases:

1 Map source file characters to the source character set (this includes
replacing trigraphs).

2 Delete all newline characters which are immediately preceded by \.

3 Divide the source file into preprocessing tokens and sequences of white
space characters (comments are replaced by a single space).

4 Execute preprocessing directives and expand macros.

Any #include files are passed through steps 1-4 recursively.

The macro __STDC__ is #defined to 1 in ISO-conforming compilers.

The ToPCC and ToANSI tools

The desktop tools ToPCC and ToANSI help you to translate C programs and
headers between the ANSI/ISO and PCC dialects of C. For more details of their use
and capabilities see the earlier chapters ToANSI and ToPCC.

pcc compatibility mode

This section discusses the differences apparent when the compiler is used in ‘PCC’
mode. When the UNIX pcc setup option is enabled, the C compiler will accept
(Berkeley) UNIX-compatible C, as defined by the implementation of the Portable C
Compiler and subject to the restrictions which are noted below.

In essence, PCC-style C is K&R C, as defined by B Kernighan and D Ritchie in their
book The C Programming Language, with a small number of extensions and
clarifications of language features that the book leaves undefined.

Language and preprocessor compatibility

In UNIX pcc mode, the Acorn C compiler accepts K&R C, but it does not accept
many of the old-style compatibility features, the use of which has been deprecated
and warned against for many years. Differences are listed briefly below:

● Compound assignment operators where the = sign comes first are accepted
(with a warning) by some PCCs. An example is =+ instead of +=. Acorn C does
not allow this ordering of the characters in the token.

● The = sign before a static initialiser was not required by some very old C
compilers. Acorn C does not support this syntax.
332

Portability
● The following very peculiar usage is found in some UNIX tools pre-dating UNIX
Version 7:

struct {int a, b;};
double d;

d.a = 0;
d.b = 0x....;

This is accepted by some UNIX PCCs and may cause problems when porting
old (and badly written) code.

● enums are less strongly typed than is usual under PCCs. enum is a non-K&R
extension to C which has been standardised by ISO somewhat differently from
the usual PCC implementation.

● chars are signed by default in UNIX pcc mode.

● In UNIX pcc mode, the compiler permits the use of the ISO ‘...’ notation
which signifies that a variable number of formal arguments follow.

● In order to cater for PCC-style use of variadic functions, a version of the PCC
header file varargs.h is supplied with the release.

● With the exception of enums, the compiler’s type checking is generally stricter
than PCC’s – much more akin to lint’s, in fact. In writing the Acorn C compiler,
we have attempted to strike a balance between generating too many warnings
when compiling known, working code, and warning of poor or non-portable
programming practices. Many PCCs silently compile code which has no chance
of executing in just a slightly different environment. We have tried to be
helpful to those who need to port C among machines in which the following
varies:

● the order of bytes within a word (little-endian versus big-endian)

● the default size of int (four bytes versus two bytes in many PC
implementations)

● the default size of pointers (not always the same as int)

● whether values of type char default to signed or unsigned char

● the default handling of undefined and implementation-defined aspects of
the C language.

If the verbosity of CC in UNIX pcc mode is found undesirable, all warnings
and/or errors can be turned off using the Suppress warnings and/or Suppress
errors setup options.
333

pcc compatibility mode
● The compiler’s preprocessor is believed to be equivalent to UNIX’s cpp, except
for the points listed below. Unfortunately, cpp is only defined by its
implementation, and although equivalence has been tested over a large body
of UNIX source code, completely identical behaviour cannot be guaranteed.
Some of the points listed below only apply when the Preprocess only option
is used with the CC tool.

● There is a different treatment of whitespace sequences (benign).

● nl is processed by CC with Preprocess only enabled, but passed by cpp
(making lines longer than expected).

● Cpp breaks long lines at a token boundary; CC with Preprocess only
enabled doesn’t (this may break line-size constraints when the source is
later consumed by another program).

● The handling of unrecognised # directives is different (this is mostly
benign).

Standard headers and libraries

Use of the compiler in UNIX pcc mode precludes neither the use of the standard
ISO headers built in to the compiler nor the use of the run-time library supplied
with the C compiler. Of course, the ISO library does not contain the whole of the
UNIX C library, but it does contain almost all the commonly used functions.
However, look out for functions with different names, or a slightly different
definition, or those in different ‘standard’ places. Unless the user directs otherwise
using Default path, the C compiler will attempt to satisfy references to, say,
<stdio.h> from its in-store filing system.

Listed below are a number of differences between the ISO C Library, and the BSD
UNIX library. They are placed under headings corresponding to the ISO header
files:

ctype.h

There are no isascii() and toascii() functions, since ISO C is not
character-set specific.
334

Portability
errno.h

On BSD systems there are sys_nerr and sys_errlist() defined to give error
messages corresponding to error numbers. ISO C does not have these, but
provides similar functionality via perror(const char *s), which displays the
string pointed to by s followed by a system error message corresponding to the
current value of errno.

There is also char *strerror(int errnum) which, when given a purported
value of errno, returns its textual equivalent.

math.h

The #defined value HUGE, found in BSD libraries, is called HUGE_VAL in ISO C. ISO
C does not have asinh(), acosh(), atanh().

signal.h

In ISO C the signal() function’s prototype is:

extern void (*signal(int, void(*func)(int)))(int);

signal() therefore expects its second argument to be a pointer to a function
returning void with one int argument. In BSD-style programs it is common to
use a function returning int as a signal handler. The PCC-style function
definitions shown below will therefore produce a compiler warning about an
implicit cast between different function pointers (since f() defaults to int f()).
This is just a warning, and correct code will be generated anyway.

f(signo)
int signo;
{
.........
}

main()
{
extern f();
signal(SIGINT, f);
}

335

Environmental aspects
stdio.h

sprintf() now returns the number of characters ‘printed’ (following UNIX
System V), whereas the BSD sprintf() returns a pointer to the start of the
character buffer.

The BSD functions ecvt(), fcvt() and gcvt() are not included in ISO C, since
their functionality is provided by sprintf().

string.h

On BSD systems, string manipulation functions are found in strings.h, whereas
ISO C places them in <string.h>. The Acorn C Compiler also has strings.h
for PCC-compatibility.

The BSD functions index() and rindex() are replaced by the ISO functions
strchr() and strrchr() respectively.

Functions which refer to string lengths (and other sizes) now use the ISO type
size_t, which in our implementation is unsigned int.

stdlib.h

malloc() returns void *, rather than the char * of the BSD malloc().

float.h

A new header added by ISO giving details of floating point precision etc.

limits.h

A new header added by ISO to give maximum and minimum limit values for data
types.

locale.h

A new header added by ISO to provide local environment-specific features.

Environmental aspects

When porting an application, the most extensive changes will probably need to be
made at the operating system interface level. The following is a brief description of
aspects of RISC OS and Acorn C which differ from systems such as UNIX.

The most apparent interface between a C program and its environment is via the
arguments to main(). The ISO Standard declares that main() is a function
defined as the program entry point with either no arguments or two arguments
336

Portability
(one giving a count of command line arguments, commonly called int argc, the
other an array of pointers to the text of the arguments themselves, after removal of
input/output redirection, commonly called char *argv[]). As discussed in the
section Environment (J.3.2) on page 87, Acorn C supports the style of input/output
redirection used by UNIX BSD4.3, but does not support filename wildcarding.
Further parameters to main() are not supported.

Under UNIX, it is common to use a third parameter, normally called char
*environ[], to give access to environment variables. The same effect can be
achieved in our system by using getenv() to request system variable values
explicitly; the names of these variables are as they appear from a RISC OS *Show
command. The string pointed at by argv[0] is the program name (similar to
UNIX, except the name is exactly that typed on invocation, so if a full pathname is
used to invoke the program, this is what appears in argv[0]).

File naming is one of the least portable aspects in any programming environment.
RISC OS uses a full stop (.) as a separator in pathnames and does not support
filename extensions (nor does UNIX, but existing UNIX tools make assumptions
about file naming conventions). The best way to simulate extensions is to create a
directory whose name corresponds to the required extension (in a manner similar
to the use of c and h directories for C source and header files).

In RISC OS 2 and RISC OS 3 filename components are normally limited to 10
characters. In later versions of RISC OS this limit has been removed. Filenames are
not case-sensitive under RISC OS as they are in UNIX, so Test and test are
regarded as referring to the same file and files with these names cannot co-exist in
the same directory.

The RISC OS desktop uses co-operative multi-tasking where each application
executes until it relinquishes control by calling the Wimp_Poll Software Interrupt
(SWI). It is essential that applications relinquish control quite frequently to
achieve a good degree of responsiveness in the desktop, and in normal use each
application should not take more than 10ms to complete its poll cycle. Where a
complex operation is performed, such as sorting or re-formatting it is reasonable
to take much longer, but it is always preferable to perform complex tasks over
several polling cycles, to give other applications a chance to respond. See the User
Interface Toolbox guide for more details on writing RISC OS applications.

Multi-threading is not supported in current versions of RISC OS, but similar
functionality can often be obtained by using callbacks. See OS_AddCallback in
the RISC OS Programmer’s Reference Manual for details.
337

Software Interrupts (SWIs)
Software Interrupts (SWIs)

The Acorn C compiler has support for making Software Interrupt (SWI) calls to
RISC OS routines, which can be used to replace any system calls which you make
under UNIX. File information, for example, can be obtained in a way similar to
stat() under UNIX, by making an OS_GBPB SWI with R0 set to the reason code
11 (full file information). Most of the UNIX low-level I/O can be simulated in this
way, but the ISO C run-time library provides sufficient support for most
applications to be written in a portable style.

Refer to the RISC OS Programmer’s Reference Manual for full details of RISC OS SWIs.

SWI Functions in kernel.h

The include file kernel.h has function prototypes and appropriate typedefs for
issuing SWIs. Briefly, the type _kernel_swi_regs allows values to be placed in
registers R0-R9, and _kernel_swi() can then be used to issue the SWI; a list of
SWI numbers can be found in the include file swis.h. For example, to set up a
callback from within a module, we call the OS_AddCallBack SWI with the
address to call in R0 and the module’s private word pointer in R1. This can be
achieved using _kernel_swi as follows:

#include “swis.h”
#include “kernel.h”

_kernel_oserror *err;
_kernel_swi_regs regs;
regs.r[0] = (int) module_callentry;
regs.r[1] = (int) pw;
err = _kernel_swi(OS_AddCallBack, ®s, ®s);

For more information see the comments in the kernel.h header file.

SWI Functions in swis.h

The swis.h header file also provides two functions _swi and _swix for calling
SWIs, which accept parameters as arguments in the function call, thus avoiding the
need to set up the _kernel_swi_regs data structure. This works by passing
details of the registers as a bit-field parameter in the function call. The macros
_IN, _INR, _OUT and _OUTR are used to define the registers that are being
passed in or returned. _IN(reg) and _OUT(reg) are used to define individual
registers, while _INR(reg1, reg2) and _OUTR(reg1, reg2) are used to
define a range of registers.
338

Portability
The above example can be written more succinctly using the _swix function as
follows:

#include “swis.h”

_kernel_oserror *err;
err = _swix(OS_AddCallBack, _INR(0,1),

(int) module_cbkentry, (int) pw);

For more information see the comments in the swis.h header file.

In-line SWI Functions

Finally, the compiler supports in-line SWIs via the __swi macro which avoids
using one of the above SWI veneer functions. This is slightly faster, but has several
limitations which mean it is of limited use.

The SWI function is defined as follows:

extern int __swi(swi-number) swi_func(params...);

For example, we can define a function os_write0 which writes a null-terminated
string by invoking the OS_Write0 SWI:

#include “swis.h”
extern int __swi(OS_Write0) os_write0(char *);
os_write0(“Hello World\n”);

In-line SWI functions have the following features and limitations:

● A maximum of four paramters may be passed to the SWI, corresponding to
registers r0 to r3.

● The value returned in r0 by the SWI is returned by the function, but values
returned in other registers cannot be accessed.

● When running in 26-bit mode (ie on RISC OS version 2, 3 or 4) only SWIs which
preserve flags may be called and only the non-X form of SWIs (as the X form
might return an error, thus corrupting the flags).

● When running in 32-bit mode the non-X and the X form of SWIs may be used
but there is no way of checking for an error being returned so it is only of use
where errors are to be ignored.

● By default the compiler assumes that the SWI will preserve the link register
and so it cannot be used in SVC mode (eg in a module). This assumption can
be overcome using the -fz feature described in Features on page 32

Since there are so many restrictions, the use of in-line SWIs is normally restricted
to special cases in libraries where they are used to optimise certain SWI calls where
speed is likely to be important.
339

Software Interrupts (SWIs)
340

16 Assembly language interface

nterworking assembly language and C – writing programs with both assembly

language and C parts – requires use both of ObjAsm and of CC and/or C++.

Further explanation of examples is provided in the chapter Interworking assembler with
C on page 111 of the Acorn Assembler guide.

Interworking assembly language and C can be very useful for construction of top
quality RISC OS applications. Using this technique you can take advantage of
many of the strong points of both languages. Writing most of the bulk of your
application in C allows you to take advantage of the portability of C, the
maintainability of a high level language and the power of the C libraries and
language. Writing critical portions of code in assembler allows you to take
advantage of all the speed of the Arm processor and all the features of the machine
(eg use the complete floating-point instruction set).

The key to interworking C and assembler is writing assembly language procedures
that obey the Arm Procedure Call Standard (APCS). This is a contract between two
procedures, one calling the other. The called procedure needs to know which Arm
and floating-point registers it can freely change without restoring them before
returning, and the caller needs to know which registers it can rely on not being
corrupted over a procedure call.

Additionally, both procedures need to know which registers contain input
arguments and return arguments, and the arrangement of the stack has to follow a
pattern that debuggers and so on can understand. For the specification of the
APCS, see the appendix ARM procedure call standard on page 297 of the Desktop Tools
guide.

This chapter explains how C uses the APCS, in terms of the appearance of
assembly language optionally output by CC and the way the stack set up by the C
run-time library works.

I

341

Register names
Register names

The following names are used in referring to Arm AArch32 registers:

a1 R0 Argument 1, also integer result, temporary
a2 R1 Argument 2, temporary
a3 R2 Argument 3, temporary
a4 R3 Argument 4, temporary
v1 R4 Register variable
v2 R5 Register variable
v3 R6 Register variable
v4 R7 Register variable
v5 R8 Register variable
v6 R9 Register variable
sl R10 Stack limit
fp R11 Frame pointer
ip R12 Temporary work register
sp R13 Lower end of current stack frame
lr R14 Link address on calls, or workspace
pc R15 Program counter and processor status

f0 F0 Floating point result
f1 F1 Floating-point work register
f2 F2 Floating-point work register
f3 F3 Floating-point work register
f4 F4 Floating-point register variable (must be preserved)
f5 F5 Floating-point register variable (must be preserved)
f6 F6 Floating-point register variable (must be preserved)
f7 F7 Floating-point register variable (must be preserved)

In this section, ‘at [r]’ means at the location pointed to by the value in register r;
‘at [r,#n]’ refers to the location pointed to by r+n. This accords with ObjAsm’s
syntax.

Register usage

The following points should be noted about the contents of registers across
function calls.

● Calling a function (potentially) corrupts the argument registers a1 to a4, ip,
lr, and f0-f3. The calling function should save the contents of any of these
registers it may need.

● Register lr is used at the time of a function call to pass the return link to the
called function; it is not necessarily preserved during or by the function call.
342

Assembly language interface
● The stack pointer sp is not altered across the function call itself, though it may
be adjusted in the course of pushing arguments inside a function. The limit
register sl may change at any time, but should always represent a valid limit
to the downward growth of sp. User code will not normally alter this register.

● Registers v1 to v6, and the frame pointer fp, are expected to be preserved
across function calls. The called procedure is responsible for saving and
restoring the contents of any of these registers which it may need to use.

Control arrival

At a procedure call, the convention is that the registers are used as follows:

● a1 to a4 contain the first four arguments. If there are fewer than four
arguments, just as many of a1 to a4 as are needed are used.

● If there are more than four arguments, sp points to the fifth argument; any
further arguments will be located in succeeding words above [sp].

● fp points to a backtrace structure.

● sp and sl define a temporary workspace of at least 256 bytes available to the
procedure.

● sl contains a stack chunk handle, which is used by stack handling code to
extend the stack in a non-contiguous manner.

● lr contains the value which should be restored into pc on exit from the called
procedure.

● pc contains the entry address of the called procedure.

Passing arguments

All integral and pointer arguments are passed as 32-bit words. Floating point ‘float’
arguments are 32-bit values, ‘double’-argument 64-bit values. These follow the
memory representation of the IEEE single and double precision formats.

Arguments are passed as if by the following sequence of operations:

● Push each argument onto the stack, last argument first.

● Pop the first four words (or as many as were pushed, if fewer) of the arguments
into registers a1 to a4.

● Call the function, for example by the branch with link instruction:

BL functionname

In many cases it is possible to use a simplified sequence with the same effect (eg
load three argument words into a1-a3).
343

Return link
If more than four words of arguments are passed, the calling procedure should
adjust the stack pointer after the call, incrementing it by four for each argument
word which was pushed and not popped.

Return link

On return from a procedure, the registers are set up as follows:

● fp, sp, sl, v1 to v6 and f4 to f7 have the same values that they contained at
the procedure call.

● Any result other than a floating point or a multi-word structure value is placed
in register a1.

● A floating point result should be placed in register f0.

Structure values returned as function results are discussed below.

Structure results

A C function which returns a multi-word structure result is treated in a slightly
different manner from other functions by the compiler. A pointer to the location
which should receive the result is added to the argument list as the first argument,
so that a declaration such as the following:

s_type afunction(int a, int b, int c)
{

s_type d;
/* ... */
return d;

}

is in effect converted to this form:

void afunction(s_type *p, int a, int b, int c)
{

s_type d;
/* ... */
*p = d;
return;

}

Any assembler-coded functions returning structure results, or calling such
functions, must conform to this convention in order to interface successfully with
object code from the C compiler.
344

Assembly language interface
Storage of variables

The code produced by the C compiler uses argument values from registers where
possible; otherwise they are addressed relative to fp, as illustrated in Examples
below.

Local variables, by contrast, are always addressed with positive offsets relative to
sp. In code which alters sp, this means that the offset for the same variable will
differ from place to place. The reason for this approach is that it permits the stack
overflow procedure to recover by changing sp and sl to point to a new stack
segment as necessary.

Function workspace

The values of sp and sl passed to a called function define an area of readable,
writable memory available to the called function as workspace. All words below
[sp] and at or above [sl,#-512] are guaranteed to be available for reading and
writing, and the minimum allowed value of sp is sl-256. Thus the minimum
workspace available is 256 bytes.

The C run-time system, in particular the stack extension code, requires up to 256
bytes of additional workspace to be left free. Accordingly, all called functions which
require no more than 256 bytes of workspace should test that sp does not point to
a location below sl, in other words that at least 512 bytes remain. If the value in
sp is less than that in sl, the function should call the stack extension function
__rt_stkovf_split_small. Functions which need more than 256 bytes of
workspace should amend the test accordingly, and call
__rt_stkovf_split_big, as described below. The following examples
illustrate a method of performing this test.

Note that these are the C-specific aliases for the kernel functions
_kernel_stkovf_split_0frame and _kernel_stkovf_split_frame
respectively, described in the chapter The shared C library in the RISC OS Programmer’s
Reference Manual. For backwards compatibility the alternative aliases
x$stack_overflow and x$stack_overflow1 are also defined.

Examples

The following fragments of assembler code illustrate the main points to consider
in interfacing with the C compiler. If you want to examine the code produced by the
compiler in more detail for particular cases, you can request an assembler listing
by enabling the Assembler option on the CC SetUp menu.
345

Examples
This is a function gggg which expects two integer arguments and uses only one
register variable, v1. It calls another function ffff.

AREA |C$$code|, CODE, READONLY

IMPORT |ffff|

IMPORT |__rt_stkovf_split_small|

EXPORT |gggg|

gggx DCB "gggg", 0 ;name of function, 0 terminated

ALIGN ;padded to word boundary

gggy DCD &ff000000 + gggy - gggx

;dist. to start of name

;Function entry: save necessary regs. and args. on stack

gggg MOV ip, sp

STMFD sp!, {a1, a2, v1, fp, ip, lr, pc}

SUB fp, ip, #4 ;points to saved pc

;Test workspace size

CMP sp, sl

BLMI |__rt_stkovf_split_small|

;Main activity of function

;

ADD v1, v1, #1 ;use a register variable

BL |ffff| ;call another function

CMP v1, #99 ;rely on reg. var. after call

;

;Return: place result in a1, and restore saved registers

MOV a1, result

LDMEA fp, {v1, fp, sp, pc}

If a function will need more than 256 bytes of workspace, it should replace the
two-instruction workspace test shown above with the following:

SUB ip, sp, #n
CMP ip, sl
BLMI |__rt_stkovf_split_big|

where n is the number of bytes needed. Note that __rt_stkovf_split_big
must be called if more than 256 bytes of frame are needed. ip must contain
sp_needed, as shown in the example above.

A function which expects a variable number of arguments should store its
arguments in the following manner, so that the whole list of arguments is
addressable as a contiguous array of values:

MOV ip, sp ;copy value of sp
STMFD sp!, {a1, a2, a3, a4} ;save 4 words of args.
STMFD sp!, {v1, v2, fp, ip, lr, pc}

;save v1-v6 needed
SUB fp, ip, #20 ;fp points to saved pc
CMP sp, sl ;test workspace
BLMI |__rt_stkovf_split_small|

Some complete program examples are described in the chapter Interworking
assembler with C on page 111 of the Acorn Assembler guide.
346

17 RISC OS Compatibility
ISC OS is a fast, efficient multi-tasking operating system for Arm processors. It
was originally designed by Acorn Computers Ltd for its range of desktop

computers, including the Archimedes, A4, A5000, A7000 and Risc PC. It has since
been used in a wide range of other products including Set Top Boxes and Internet
Appliances.

This chapter discusses some of the important considerations when developing
software for RISC OS and in particular issues in developing software that is
compatible with earlier versions of RISC OS running on older Arm processors.

32-bit compatibility

RISC OS was originally designed for the ARM2 and ARM3 processors, which had a
26-bit address bus and a combined 24-bit program counter and 8-bit status flags in
register R15.

The ARM6 expanded the address bus and program counter to 32 bits and moved
the status flags to a separate register, but included backwards-compatible 26-bit
modes to allow ARM2 and ARM3 user programs to run unmodified. The latest Arm
processors have removed these 26-bit compatibility modes in favour of the new
16-bit Thumb architecture. As a result, versions of RISC OS for newer processors
such as the ARM9, ARM10 and XScale will be 32-bit only, using only 32-bit modes.

In the past RISC OS has used only 26-bit modes for backwards compatibility (with
the exception of FIQ handlers and, in RISC OS 4, the FPEmulator). Indeed, RISC OS
4 and earlier versions do not support operation in 32-bit modes for general
applications or modules.

The components included here will allow programs to be built so they run on any
system from an ARM2 Archimedes to a modern ARMv7 architecture platform. This
is achieved by creating 26/32-bit neutral code that performs the same when
running in either a 26-bit or 32-bit mode.

Converting existing C applications to 32-bit form is very simple – just re-compile
them using this compiler and the associated libraries and ensure that the latest
modules are distributed and installed with the application, as explained below.

R

347

The shared C library
A few APIs will change slightly in 32-bit versions of RISC OS to support the full
addressing range. Some existing SWIs such as OS_ReadLine use a single register
to hold a pointer and flags. This limits the address range that can be used and
could cause the flags to be corrupted if high pointer addresses were used. The new
32-bit APIs will avoid these problems while retaining backwards compatibility as
far as possible and you should refer to the relevant documentation for details.

If you compile with -arch 4 or later, also specify -memaccess -L22-S22 if you
want your software to be Risc PC compatible. This is to stop the compiler from
using the ARMv4 halfword memory access instructions, which although available
on the StrongARM, do not work in the Risc PC.

The shared C library

The SharedCLibrary module supplied with this version of the Acorn C/C++
compiler is suitable for RISC OS 3.10 or later. It requires FPEmulator 4.03 or later
(to support the LFM and SFM instructions) and it also requires the CallASWI
module on RISC OS 3.60 or earlier.

The C library supports the new APCS-32 calling standard, together with the existing
APCS-R. It no longer supports APCS-A.

On a 32-bit RISC OS APCS-R will no longer be supported, unless via some form of
26-bit emulation software.

Ensuring the necessary components are present

It is important that RISC OS applications check the installed versions of the
software components that they need and load new versions, as appropriate.

C programs compiled to run in 32-bit mode will need SharedCLibrary 5.17 or later
(this was the first 32-bit compatible shared C library).

C programs which use the new C99 library functions, 64 bit integers or variable
length arrays will need SharedCLibrary 5.43 or later.

C programs which use 64 bit file pointers (see Large file support on page 121) will
need SharedCLibrary 5.64 or later.

C programs which use the new C18 library functions aligned_alloc(),
at_quick_exit(), quick_exit(), or timespec_get() will need
SharedCLibrary 6.05 or later.

It is recommended that the necessary components are tested and loaded as
needed by the application’s !Run file, as follows:
348

RISC OS Compatibility
RMEnsure UtilityModule 3.10 Error This application requires RISC OS 3.10 or
later
RMEnsure UtilityModule 3.70 RMEnsure CallASWI 0.02 RMLoad
System:Modules.CallASWI
RMEnsure UtilityModule 3.70 RMEnsure CallASWI 0.02 Error This application
requires CallASWI 0.02 or later
RMEnsure FPEmulator 4.03 RMLoad System:Modules.FPEmulator
RMEnsure FPEmulator 4.03 Error This application requires
FPEmulator 4.03 or later
RMEnsure SharedCLibrary 5.17 RMLoad System:Modules.CLib
RMEnsure SharedCLibrary 5.34 Error This application requires SharedCLibrary
5.34 or later

Note that you should always specify 5.17 (the first 32-bit version) as the version of
SharedCLibrary required in the first RMEnsure - this will avoid the potentially fatal
possibility of killing a RAM version that is currently in use (killing the ROM version
is safe). The second RMEnsure asks for 5.34, as that is the first non-beta version. If
you do require a newer version, only change the second RMEnsure.
349

Ensuring the necessary components are present
350

18 How to write relocatable modules
in C

elocatable modules are the basic building blocks of RISC OS and the means by

which RISC OS can be extended by a user. The archetypal use for RISC OS

extensions is the provision of device drivers for devices attached to hardware.

Relocatable modules also provide mechanisms which can be exploited to:

● extend RISC OS’s repertoire of built-in commands (* commands)

● provide services to applications (for example, as does the shared C library
module)

● implement applications.

A complete discussion of these topics is beyond the scope of this chapter.

For modules which provide services, the principal mechanism for accessing those
services from user code is the SoftWare Interrupt (SWI). For example, the shared C
library implements a handler for a single SWI which, when called from the library
stubs linked with the application, returns the address of the C library module
which in turn allows the library stubs to be initialised to point to the correct
addresses within the library module. Thereafter, library services are accessed
directly by procedure call, rather than by SWI call. All this illustrates is the rich
variety of mechanisms available to be exploited.

Getting started

To write a module in C you will need:

● the CC and CMHG tools supplied with Acorn C/C++

● the C Library stubs supplied with Acorn C/C++

● a thorough understanding of RISC OS modules (read the Modules chapter of the
RISC OS Programmer’s Reference Manual).

R

351

Constraints on modules written in C
Constraints on modules written in C

A module written in C will nearly always use the shared C library module via the
library stubs. In the exceptional circumstances where you need to use the
stand-alone C library – typically to enforce the use of a specific version – you must
link with the module variant (C:o.ansilibm rather than C:o.ansilib).

Modules that use any of the C99 library functions, long long variables or variable
length arrays require the SharedCLibrary 5.43 or later to be loaded as explained in
C99 features on page 97.

Normally all components of a module written in C must be compiled with the
compiler SetUp menu option Module code enabled (equivalent to the -zM
command line option). This allows the module’s static data to be separated from
its code and multiply instantiated. The only exception to this rule is for special
cases where the module-is-not-re-entrant keyword has been specified.

Prior to RISC OS 4.00, floating point instructions could not be used in modules,
except in the module’s runnable application code.

Floating point instructions can be used in supervisor mode with RISC OS 4.00 and
later versions, but if used in the SWI or other handler functions it is necessary to
preserve the floating point registers, as the CMHG veneers do not preserve them.
This can be achieved by writing some assembler veneers or by using the new
FPEmulator_ChangeContext SWI which is in FPEmulator 4.14 and later.
Floating point exceptions within modules should be avoided and are best
disabled.

Floating point in interrupts and callbacks should also save the floating point
context in the same way.

Overview of modules written in C

 A module written in C includes the following:

● a Module Header (described in the Modules chapter of the RISC OS Programmer’s
Reference Manual), constructed using CMHG;

● a set of entry and exit ‘veneers’, interfacing the module header to the C
run-time environment (also constructed using CMHG);

● the stubs of the shared C library;

● code written by you to implement the module’s functionality – for example:
*command handlers, SWI handlers and service call handlers.

These parts must be linked together using the Link tool with the SetUp box
Module option enabled.
352

How to write relocatable modules in C
The next section describes:

● how to write a CMHG input file to make a module header and any necessary
entry veneers

● the interface definitions to which each component of your module must
conform

● how to write a CMHG input file to generate entry veneers for vector and event
handlers written in C.

Functional components of modules written in C

The following components may be present in a module written in C (all are
optional except for the title string and the help string which are obligatory):

● Runnable application code (called start code in the module header
description). This will be present if you tell CMHG that the module is runnable
and include a main() function amongst your module code. This code is
executed by an RMRun command but not by an RMLoad command. Note that
the runnable code does not have some of the restrictions that normally apply
to module code, for example, it is possible to allocate large amounts of
memory on the stack.

● Initialisation code. ‘System’ initialisation code is always present, as the shared
library must be initialised. Your initialisation function will be called after the
system has been initialised if you declare its name to CMHG.

● Finalisation code. The C library has to be closed down properly on module
termination. Your own finalisation code will be called before the system has
been closed down if you declare its name to CMHG.

● Service call handler. This will be present if you declare the name of a handler
function to CMHG. In addition, you can give a list of service call numbers
which you wish to deal with and CMHG will generate fast code to ignore other
calls without calling your handler.

● A title string in the format described in the RISC OS Programmer’s Reference
Manual. CMHG will insist that you give it a valid title string.

● A help string in the format described in the RISC OS Programmer’s Reference
Manual. Again, CMHG will insist that you give a valid help string.

● An optional date string which is added to the help string. If this is not specified
the date is taken from the datestamp of the CMHG input file.

● Help and command keyword table. This section is optional and will be present
only if you describe it to CMHG and declare the names of the command
handlers to CMHG. Obviously, their implementations must be included in the
linked module.
353

Functional components of modules written in C
● International help file. Specified when messages in the help and command
keyword table are internationalised using a messages file.

● SWI chunk base number. Present only if declared to CMHG.

● SWI handler code. Present if you declare the name of a handler function to
CMHG.

● SWI decoding table. Present only if described to CMHG.

● SWI decoding code. Present only if you declare the name of your decoding
function to CMHG.

● Vector handlers. CMHG will generate entry veneers for vector handlers. You
can register these veneers with RISC OS using SWI OS_Claim, etc; you have to
provide implementations of the handlers themselves. The names of the
handler functions and of the entry veneers have to be given to CMHG.

● An event handler. CMHG can generate an entry veneer for an event handler.
You can register this veneer with RISC OS using SWI OS_Claim; you have to
provide the implementation of the handler itself. The name of the handler
function and of the entry veneer has to be given to CMHG.

● Generic veneers. CMHG will generate generic veneers for callbacks, etc. You
can register these veneers with RISC OS using SWI OS_AddCallBack,
OS_CallEvery, etc; you have to provide implementations of the handlers
themselves. The names of the handler functions and of the entry veneers have
to be given to CMHG.

● Library initialisation code. This can be used to intercept the initialisation of
the C library when the module is first loaded.

● Library enter code. If declared, the initialisation of the C library when the
module is started as an application can be intercepted.

● Library finalisation code. This component can be declared to intercept the
finalisation of the C library when the module is killed.

Each component that you wish to use must be described in your input to CMHG.
Use of most components also requires that you write some C code which must
conform to the interface descriptions given in the sections below.

The C module header generator

The C Module Header Generator (CMHG) is a special-purpose assembler of
module headers. It accepts as input a text file describing which module facilities
you wish to use and generates as output a linkable object module (in Arm Object
Format). For details of how to run the CMHG tool, see the chapter entitled CMHG
earlier in this manual.
354

How to write relocatable modules in C
The format of input to CMHG

Input to CMHG is in free format and consists of a sequence of ‘logical lines’. Each
logical line starts with a keyword which is followed by some number of parameters
and (sometimes) keywords. The precise form of each kind of logical input line is
described in the following sections.

A logical line can be continued on the next line of input immediately after a
comma (that is, if the next non-white-space character after a comma is a newline
then the line is considered to be continued).

Lists of parameters can be separated by commas or spaces, but use of comma is
required if the line is to be continued.

A comment begins with a ; and continues to the end of the current line. A
comment is valid anywhere that trailing white space is valid (and, in particular,
after a comma).

A keyword consists of a sequence of alphabetic characters and minus signs. Often,
a keyword is the same as the description of the corresponding field of the module
header (as described in the RISC OS Programmer’s Reference Manual) but with spaces
replaced by minus signs. For example: initialisation-code;
title-string; service-call-handler.

Keywords are always written entirely in lower case and are always immediately
followed by a :. Character case is significant in all contexts: in keywords, in
identifiers, and in strings.

Numbers used as parameters are unsigned. Three formats are recognised:

● unsigned decimal

● 0xhhh... (up to 8 hex digits)

● &hhh... (up to 8 hex digits).

In the following sections, the parts headed CMHG description tell you what you have
to describe to CMHG in order to use the facility described in that section; the parts
headed C interface introduce a description of the interface to which the handler
function you write must conform.

Using the preprocessor

CMHG will preprocess the CMHG file using the C preprocessor if the -p command
line option is used. This is particularly useful for using symbolic variable names
defined in header files, rather than entering numeric values which are then defined
in multiple files.
355

Functional components of modules written in C
For example, this CMHG text:

swi-chunk-base-number: 0x82880
service-call-handler: Window_services 0x46, 0x44ec1, 0x44ec2

can be replaced by the more readable and maintainable:

#include "window.h"
#include "services.h"
swi-chunk-base-number: Window_SWIChunkBase
service-call-handler: Window_services Service_ModeChange,

 Service_ToolboxTaskBorn, Service_ToolboxTaskDied

It also allows conditional inclusion of CMHG lines:

#ifdef DEBUG
command-keyword-table: Window_commands Window_Memory(), Window_Tasks()
#endif

The command-line options -I and -D may be used to specify the include path and
to define macros, as for the C compiler. See Command line options on page 61.

Runnable application code

CMHG description:

module-is-runnable: ; No parameters.

C interface:

/*
* Start code
* ==========
*
* Entered in user-mode with argc and argv
* set up as for any other application. Malloc
* obtains storage from application workspace.
*/
int main(int argc, char *argv[]);

To be useful (ie re-runnable), a runnable application must implement at least one
* command handler (see below) for its command line, which, when invoked, enters
the module (calls SWI OS_Module with the Enter reason code).

Note that the runnable application code is only executed when the module is
RMRun. It is not executed when RMLoad is used).

atexit functions set up in the runnable application code will be called when the
application code exits. This behaviour is different to atexit functions set up in
initialisation code.
356

How to write relocatable modules in C
Initialisation code

CMHG description:

initialisation-code: user_init ; The name of your initialisation function.
; Any valid C function name will do.

C interface:

/*
* Initialisation code
* ===================
*
* Return NULL if your initialisation succeeds; Return the special value
* initialise_NO_STATIC_DATA if your initialisation succeeds but you do not require
* static data for this instantiation (including shared library static
* data - you should assume that any shared library call might need to use
* static data). Otherwise return a pointer to an error block.
* cmd_tail points to the string of arguments with which the module is
* invoked (may be "", and is control-terminated, not zero terminated).
* podule_base is the 'R11' value established by module initialisation
* which is the podule base address if the code has been invoked from a
* podule, otherwise it is the number of other instantiations of the module.
* pw is the 'R12' value established by module initialisation. You may
* assume nothing about its value (in fact it points to some RMA space
* claimed and used by the module veneers). All you may do is pass it back
* for your module veneers via an intermediary such as SWI OS_CallEvery
* (use _swix() to issue the SWI call).
*/

_kernel_oserror *user_init(const char *cmd_tail, int podule_base, void *pw);

Note that you can choose any valid C function name as the name of your
initialisation code (CMHG insists on no more than 31 characters).

atexit functions set up in the module initialisation code or in other module
routines, other than main, will be called on module finalisation.

Finalisation code

CMHG description:

finalisation-code: user_final ; The name of your finalisation function.
; Any valid C function name will do.

C interface:

/*
* Finalisation code
* =================
*
* Return NULL if your finalisation succeeds. Otherwise return a pointer to
* an error block if your finalisation handler does not wish to die (e.g.
* toolbox modules return a 'Task(s) active' error).
* fatal, podule and pw are the values of R10, R11 and R12 (respectively)
* on entry to the finalisation code.
*/

_kernel_oserror *user_final(int fatal, int podule, void *pw);
357

Functional components of modules written in C
A call to library finalisation code is inserted automatically by CMHG; the C library
finalisation code will call your finalisation handler immediately before closing
down the library (on module finalisation).

Service call handler

CMHG description:

service-call-handler: sc_handler <number> <number> ...

C interface:

/*
* Service call handler
* ====================
*
* Return values should be poked directly into r->r[n]; the right
* value/register to use depends on the service number (see the relevant
* RISC OS Programmer's Reference Manual section for details).
* pw is the private word (the 'R12' value).
*/

void sc_handler(int service_number, _kernel_swi_regs *r, void *pw);

Service calls provide a generic mechanism. Some need to be handled quickly;
others are not time critical. Because of this, you may give a list of service numbers
in which you are interested and CMHG will generate code to ignore the rest quickly.
The fast recognition code looks like:

TEQ r1, #FirstInterestingServiceNumber
TEQNE r1, #SecondInterestingServiceNumber
...
TEQNE r1, #NthInterestingServiceNumber
MOVNE pc, lr ; drop into service call entry veneer.

If you give no list of interesting service numbers then all service calls will be passed
to your handler.

In order to construct a relocatable module which implements a RISC OS
application (by using the module-is-runnable keyword) you must claim and
deal with the Service_Memory service call. See the relevant section in the RISC OS
Programmer’s Reference Manual for details of this service call.
358

How to write relocatable modules in C
The following is a suitable handler written in C for this service call:

#define Service_Memory 0x11
void FrontEnd_services(int service_number, _kernel_swi_regs *r, void *pw)
{

IGNORE(pw);
/* keep application workspace (r2 holds CAO pointer) */
if (service_number == Service_Memory && r->r[2] ==
(int)Image__RO_Base)
{

r->r[1] = 0; /* refuse to relinquish app. workspace */
}

}

The above handler needs to compare the contents of r[2] with the address of the
base of your module containing it. This is not a value directly available in C, so the
following assembly language fragment can be used to gain access to the symbol
Image$$RO$$Base, which is defined by Link when your module is linked together:

IMPORT |Image$$RO$$Base|
EXPORT Image__RO_Base

AREA Code_Description, DATA, REL
Image__RO_Base

DCD |Image$$RO$$Base|

END

Title string

CMHG description:

title-string: title

title must consist entirely of printable, non-space ASCII characters.

Any underscores in the title are replaced by spaces. CMHG will fault any title
longer than 31 characters and warn if the length of the title string is more than 16.

Help string

CMHG description:

help-string: help d.dd comment ; help string and version number

The help string is restricted to 15 or fewer alphanumeric, ASCII characters and
underscores. Longer strings are truncated (with a warning) to 15 characters then
padded with a single space. Shorter titles are padded with one or two TAB
characters so they will appear exactly 16 characters long.
359

Functional components of modules written in C
The version number must consist of a digit, a dot, then 2 consecutive digits.
Conventionally, the first digit denotes major releases; the second digit minor
releases; and the third digit bug-fix or technical changes. If the version number is
omitted, 0.00 is used.

CMHG automatically inserts the date into the version string, as required by
RISC OS convention. The date may be specified with the date-string keyword
or if none is specified it defaults to the datestamp of the CMHG input file. Note
that earlier versions of CMHG used the current date, but that behaviour has been
removed as it caused the string date to change when a module was rebuilt without
any modifications.

A ‘comment’ of up to 34 characters can also be included after the version number.
It will appear in the tail of the module’s help string, after the date. A typical use is
for annotating the help string in the following style:

SomeModule 0.92 (14 Oct 2002) Experimental version

CMHG refuses to generate a help string longer than 79 characters and warns if it
has to truncate your input.

Date string

CMHG description:

date-string: date ; date module was released

This date string is free format, but should normally be the day of the month, the
three letter month name and the four digit year, separated by spaces. For example:

date-string: 14 Jun 2003

The date is used in the help string as explained above.
360

How to write relocatable modules in C
Help and command keyword table

CMHG description:

command-keyword-table: cmd_handler command-description+

(Here command-description+ denotes one or more command descriptions).

A command-description has the format:

star-command-name "("
min-args: unsigned-int ; default 0
max-args: unsigned-int ; default 0
gstrans-map: unsigned-int ; default 0
fs-command: ; set bit 31 in the flags byte
status: ; set bit 30 in the flags byte
configure: ; set bit 30 in the flags byte
help: ; set bit 29 in the flags byte
international: ; set bit 28 in the flags byte
invalid-syntax: text
help-text: text
add-syntax: ; append invalid-syntax string to

; help-text string
")"

Each sub-argument is optional. A comma after any item allows continuation on
the next line.

A text item follows the conventions of ISO C string constants: it is a sequence of
implicitly concatenated string segments enclosed in " and ".

Segments may be separated by white space or newlines (no continuation comma
is needed following a string segment).

Within a string segment \ introduces an escape character. All the single character
ASCII escapes are implemented, but hexadecimal and octal escape codes are not
implemented. A \ immediately preceding a newline allows the string segment to be
continued on the following line (but does not include a newline in the string; if a
newline is required, it must be explicitly included as \n).

min-args and max-args record the minimum and maximum number of
arguments the command may accept; gstrans-map records, in the least
significant 8 bits, which of the first 8 arguments should be subject to expansion by
OS_GSTrans before calling the command handler.

The keywords fs-command, status, configure, help and international
set bits in the command’s information word which mark the command as being of
one of those classes. The status and configure keywords are synonyms; both
set bit 30 of the flags word.
361

Functional components of modules written in C
The invalid-syntax and help-text messages should be self-explanatory. If
add-syntax is also specified then the invalid-syntax string will be
appended to the help-text string when it is printed. Note that modules
designed for RISC OS 3.60 or later should use the internationalised help flag
(international). This option is then superfluous.

The international flag indicates that the invalid-syntax and help-text
messages are tokens to be looked up in the messages file specified by the
international-help-file keyword (see below).

Example CMHG description:

command-keyword-table: cmd_handler
tm0(min-args: 0, max-args: 255,

help-text: "Syntax:\ttm0 <filenames>\n"),
tm1(min-args:1, max-args:1,

add-syntax:,
help-text: "tm1 does something.\n",
invalid-syntax: "Syntax:\ttm1" " <integer>"
"\n"),

tm2(min-args:1, max-args:2,
international:,
help-text: "HTM2",
invalid-syntax: "STM2")

This describes three * commands, *tm0, *tm1 and *tm2, which are to be handled
by the C function cmd_handler. The handler function will be called with 0 as its
third argument if it is being called to handle the first command (tm0, above), 1 as
its third argument if it is being called to handle the second command (tm1, above),
etc. The programmer must keep the CMHG description in step with the
implementation of cmd_handler.

The *tm2 command illustrates the use of the international flag. The
help-text and invalid-syntax parameters specify the names of tokens that
will be looked up in a messages file. The path to the messages file must be
specified by using the international-help-file keyword (see below).

C interface:

/*
* Command handler
* ===============
*
* If cmd_no identifies a command, then arg_string gives the command tail
* (which you may not overwrite), and argc is the number of parameters.
* NB. arg_string is control terminated so it may not be a C string.
* Return NULL if the command has been successfully handled; otherwise
* return a pointer to an error block describing the failure (in this
* case, the veneer code will set the 'V' bit).
*
* If cmd_no identifies a *Help entry, then arg_string denotes a buffer
* that you can assemble your output into, and argc is the length of the
* buffer, in bytes. cmd_handler must return NULL, an error pointer or
362

How to write relocatable modules in C
* help_PRINT_BUFFER (if help_PRINT_BUFFER is returned, the zero-
* terminated buffer will be printed).
*
* If cmd_no identifies a *Configure option, then arg_string may contain
* one of the two special values arg_CONFIGURE_SYNTAX or arg_STATUS;
* otherwise it points at the command tail, with leading spaces skipped.
* If arg_string is set to arg_CONFIGURE_SYNTAX, the user has typed
* *Configure with no parameter; simply print your syntax string. If
* arg_string is set to arg_STATUS, print your current configured status.
* Otherwise, the user has typed *Configure with one or more parameters
* as described in the command tail. The parameter argc contains an
* undefined value in all three cases. Return NULL, an error pointer, or
* one of the four special values defined below.
*
* pw is the private word pointer ('R12') value passed into the entry
* veneer
*/

#define help_PRINT_BUFFER ((_kernel_oserror *) arg_string)
#define arg_CONFIGURE_SYNTAX ((char *) 0)
#define arg_STATUS ((char *) 1)
#define configure_BAD_OPTION ((_kernel_oserror *) -1)
#define configure_NUMBER_NEEDED ((_kernel_oserror *) 1)
#define configure_TOO_LARGE ((_kernel_oserror *) 2)
#define configure_TOO_MANY_PARAMS ((_kernel_oserror *) 3)

#define CMD_tm0 0
#define CMD_tm1 1
#define CMD_tm2 2

_kernel_oserror *cmd_handler(const char *arg_string, int argc, int cmd_no, void
*pw);

International help file

CMHG description:

international-help-file: path ; message file pathname

This gives the pathname of the message file to be used when outputting text from
any entries in the help and command keyword table that have the
international flag set.

SWI chunk base number

CMHG description:

swi-chunk-base-number: number

You should use this entry if your module provides any SWI handlers. It denotes the
base of a range of 64 values which may be passed to your SWI handler. SWI chunks
are allocated by RISC OS Open and if your software is to be distributed to other
RISC OS users you must contact RISC OS Open to get a chunk allocated uniquely
363

Functional components of modules written in C
to your product. See the chapter An introduction to SWIs in the RISC OS Programmer’s
Reference Manual for more details. Information on how to request an allocation can
be found at https://www.riscosopen.org/content/allocate/.

SWI handler code

CMHG description:

swi-handler-code: swi_handler ; any valid C function name will do

C interface:

/*
* SWI handler code
* ================
*
* swi_offset contains the offset of the SWI into your SWI chunk.
* r points to the registers passed to the SWI.
*
* Return NULL if the SWI is handled successfully; otherwise return
* a pointer to an error block which describes the error.
* The veneer code sets the 'V' bit if the returned value is non-NULL.
* The special value error_BAD_SWI may be returned if you do not
* implement a SWI; the veneer will arrange for the appropriate
* standard internationalised error 'SWI value out of range for
* module Example' to be returned.
* The handler may update any of its input registers (R0-R9).
* pw is the private word pointer ('R12') value passed into the
* SWI handler entry veneer.
*/
#define error_BAD_SWI ((_kernel_oserror *) -1)

_kernel_oserror *swi_handler(int swi_offset, _kernel_swi_regs *r, void *pw);

If your module is to handle SWIs then it must include both swi-handler-code
and swi-chunk-base.

Example CMHG description:

swi-chunk-base-number: 0x88000
swi-handler-code: widget_swi
364

https://www.riscosopen.org/content/allocate

How to write relocatable modules in C
SWI decoding table

CMHG description:

swi-decoding-table: swi-base-name swi-name*

This table, if present, is used by OS_SWINumberTo/FromString.

Example CMHG description:

swi-chunk-base-number: 0x88000
swi-handler-code: widget_swi
swi-decoding-table: Widget,

Init Read Write Close

This would be appropriate for the following name/number pairs:

Widget_Init 0x88000
Widget_Read 0x88001
Widget_Write 0x88002
Widget_Close 0x88003

SWI decoding code

CMHG description:

swi-decoding-code: name_decode/number_decode; any valid C function names

C interface:

/*
* SWI decoding code
* =================
*
* For the text->number converter, string points to the name to convert
* (terminated by a control character). If the SWI is recognised, return
* the offset into the chunk (0-63), otherwise return <0.
*
* For the number->text converter:
* swi_no is the offset (0..63) of the SWI within the SWI chunk.
* buffer is a pointer to a buffer;
* offset is the offset within the buffer at which to place the text;
* size is the length of the buffer.
* You should write the SWI name into the buffer at the position given
* by offset, then return offset updated by the length of the text
* written (excluding any terminating NUL, if you add one). If you don't
* have a name for the SWI, just return offset, unaltered.
*
* pw is the private word pointer ('R12') passed into the entry veneer.
*/
int name_decode(const char *string, void *pw);
int number_decode(int swi_no, char *buffer, int offset, int size, void *pw);

CMHG description (single function version for backwards compatibility):

swi-decoding-code: swi_decode; any valid C function name will do
365

Functional components of modules written in C
C interface (single function version for backwards compatibility):

/*
* SWI decoding code
* =================
*
* On entry, r[0] < 0 means a request to convert from text to a number.
* In this case r[1] points to the string to convert (terminated by a
* control character, NOT necessarily by NUL).
* Set r[0] to the offset (0..63) of the SWI within the SWI chunk if
* you recognise its name; set r[0] < 0 if you don't recognise the name.
*
* On entry, r[0] >= 0 means a request to convert from a SWI number to
* a SWI string:
* r[0] is the offset (0..63) of the SWI within the SWI chunk.
* r[1] is a pointer to a buffer;
* r[2] is the offset within the buffer at which to place the text;
* r[3] is the length of the buffer.
* You should write the SWI name into the buffer at the position given
* by r[2] then update r[2] by the length of the text written (excluding
* any terminating NUL, if you add one).
*
* pw is the private word pointer ('R12') passed into the entry veneer.
*
* For a more elegant interface, supply a pair of '/'-separated function
* names to CMHG's swi-decoding-code command.
*/
void swi_decode(int r[4], void *pw);

If you omit a SWI decoding table then your SWI decoding code will be called
instead. Of course, you don’t have to provide either.

Vector handlers

CMHG description:

vector-handlers: entry_name/handler_name ...

Any number of entry_name/handler_name pairs may be given. If you omit the / and
the handler name, CMHG constructs a handler name by appending _handler to
the entry name.

C interface:

/*
* Vector handlers
* ===============
*
* This is the name of the vector handler entry veneer
* compiled by CMHG. Use this name as an argument to SWI
* OS_Claim. (EventV claimants should use a CMHG event handler).
*

366

How to write relocatable modules in C
* Note that vector handlers were previously called IRQ handlers
* and were documented as being for attaching to IrqV. IrqV has
* long being deprecated; you should use OS_ClaimDeviceVector
* instead.
*/
extern void entry_name(void);

/*
* This is the handler function you must write to handle the
* vector for which entry_name is the veneer function.
*
* If a handler function is installed onto a vector, then:
* Return 0 to intercept the call.
* Return 1 to pass on the call.
* If you use a vector handler veneer for any other purpose, always
* return non-0, and consider the use of a generic veneer instead.
* It is not currently possible to return an error from a vector
* handler.
*
* 'r' points to a vector of words containing the values of R0-R9 on
* entry to the veneer. If r is updated, the updated values will be
* loaded into R0-R9 on return from the handler.
*
* pw is the private word pointer ('R12') value with which the
* vector entry veneer is called.
*/
int handler_name(_kernel_swi_regs *r, void *pw);

Handlers must be installed from some part of the module which runs in SVC mode
(eg initialisation code, a SWI handler, etc). The name to use at installation time is
the entry_name (not the name of the handler function). This is because C
functions have to be entered and exited via a veneer which switches the static base
context and changes to SVC mode if necessary.

Refer to the RISC OS Programmer’s Reference Manual for information on how to install
and remove handlers.
367

Functional components of modules written in C
Event handler

CMHG description:

event-handler: entry_name/handler_name event_no event_no ...

Only one entry_name/handler_name pair may be given.

C interface:

/*
* Event handler
* =============
*
* This is the name of the event handler entry veneer compiled by CMHG.
* Use this name as an argument to, for example, SWI OS_Claim, in
* order to attach your handler to EventV.
*/
extern void entry_name(void);

/*
* This is the handler function you must write to handle the event for
* which entry_name is the veneer function.
*
* Return 0 if you wish to claim the event.
* Return 1 if you do not wish to claim the event.
*
* 'r' points to a vector of words containing the values of R0-R9 on
* entry to the veneer. If r is updated, the updated values will be
* loaded into R0-R9 on return from the handler.
*
* pw is the private word pointer ('R12') value with which the event
* entry veneer is called.
*/
int handler_name(_kernel_swi_regs *r, void *pw);

The name to use at installation time is the entry_name (not the name of the
handler function). Refer to the RISC OS Programmer’s Reference Manual for details and
for information on how to install and remove event handlers. As an example, this is
the skeleton of an event handler for key presses and mouse clicks:

/* the claim/free functions... */
#define EventV 16
#define EnableEvent 14
#define DisableEvent 13
#define MouseClick 10
#define Keypress 11

static void claim_release(int claim, void *pw)
{

_swix(claim ? OS_Claim : OS_Release, _INR(0,2),
 EventV, register_event, pw);

}

368

How to write relocatable modules in C
static void add_remove(int add)
{

_swix(OS_Byte, _INR(0,1),
 add ? EnableEvent : DisableEvent, MouseClick);
_swix(OS_Byte, _INR(0,1),
 add ? EnableEvent : DisableEvent, Keypress);

}

static void claim_free_events(int claim,void *pw)
{

if (claim) {
claim_release(1,pw);
add_remove(1);

} else {
add_remove(0);
claim_release(0,pw);

}
}

/* init... */
extern _kernel_oserror *events_init(char *cmd_tail, int podule_base, void *pw)
{

IGNORE(cmd_tail);
IGNORE(podule_base);
claim_free_events(1,pw);
return NULL;

}

/* finalise... */
extern _kernel_oserror *events_final (int fatal, int podule, void *pw)
{

IGNORE(fatal);
IGNORE(podule);
/* handle low level events */
claim_free_events(0,pw);
return NULL;

}

/* the handler itself... */
extern int event_handler(_kernel_swi_regs *r,void *pw)
{

IGNORE(pw);
/* switch on the event code */
switch (r->r[0]) {
case MouseClick:
case Keypress:

break;
default:

break;
}
return 1;

}

369

Functional components of modules written in C
Generic veneers

CMHG description:

generic-veneers: entry_name/handler_name ...

Any number of entry_name/handler_name pairs may be given. If you omit the / and
the handler name, CMHG constructs a handler name by appending _handler to
the entry name.

C interface:

/*
* Generic veneers
* ===============
*
* This is the name of the generic entry veneer compiled by CMHG.
* Use this name as an argument to, for example, SWI OS_CallEvery
* or OS_AddCallBack.
*
* These veneers ensure that your handlers preserve R0-R11
* and the processor flags (unless you return an error pointer.
* The veneer can be entered in either IRQ or SVC mode. R12 and
* R14 are corrupted.
*/
extern void entry_name(void);

/*
* This is the handler function that the veneer declared above
* calls.
*
* For a standard exit, return NULL. For handlers that can return an
* error, return an error block pointer, and the veneer will set the
* 'V' bit, and set R0 to the error pointer.
*
* 'r' points to a vector of words containing the values of R0-R9 on
* entry to the veneer. If r is updated, the updated values will be
* loaded into R0-R9 on return from the handler.
*
* pw is the private word pointer ('R12') value with which the
* entry veneer is called.
*/
_kernel_oserror *handler_name(_kernel_swi_regs *r, void *pw);

Handlers must be installed from some part of the module which runs in SVC mode
(eg initialisation code, a SWI handler, etc). The name to use at installation time is
the entry_name (not the name of the handler function). This is because C
functions have to be entered and exited via a veneer which switches the static base
context and changes to SVC mode if necessary.
370

How to write relocatable modules in C
Generic veneers are general-purpose entry points that can be used for things like
callback handlers registered with OS_AddCallBack and filing system entry points.
They work in the same way as vector handlers, except they either return preserving
processor flags, or set V to return an error.

Library initialisation code

CMHG description:

library-initialisation-code: xxxx

The code xxxx is called instead of _clib_initialisemodule. Because the
C library has not been initialised at this point the first thing it must do is call
_clib_initialisemodule.

Library enter code

CMHG description:

library-enter-code: xxxx

The code xxxx is called instead of _clib_entermodule when the module is
started as an application. The C library has only been partially initialised at this
point, so there is no USR mode stack or heap. Because this entry point is called in
USR mode, this requires it to be written in assembler. You may choose to perform
some actions and then branch to _clib_entermodule (this will set up the heap
and stack in the application slot, parse the command line and branch to main(),
and will not return to you) or you may choose to replace this functionality in its
entirety.

Library finalisation code

CMHG description:

library-finalisation-code: xxxx

The code xxxx is called instead of _clib_finalisemodule. The last thing it
should do is call _clib_finalisemodule.

Non-reentrant modules

CMHG description:

module-is-not-re-entrant: ; No parameters.

Indicates to the C library stubs that it need not copy the module data into a
separate RMA workspace area. This could save memory, but as it will not be
possible to re-initialise or re-instantiate the module this option should not be
used in normal circumstances.
371

Functional components of modules written in C
Turning interrupts on and off

The following (<kernel.h>) library functions support the control of the interrupt
enable state:

int _kernel_irqs_disabled(void);
/*
* Returns non-0 if IRQs are currently disabled.
*/

void _kernel_irqs_off(void);
/*
* Disable IRQs.
*/

void _kernel_irqs_on(void);
/*
* Enable IRQs.
*/

These functions allow you to disable interrupts around a piece of code that is not
interrupt safe, then restore the original state afterwards:

int irqs_were_on = !_kernel_irqs_disabled();
if (irqs_were_on)

_kernel_irqs_off();
/* do atomic stuff... */
if (irqs_were_on)

_kernel_irqs_on();
372

19 Overlays

verlays are a very old technique for squeezing quart-sized programs into

pint-sized memories: a kind of poor man’s paging.

In common with paged programs, an overlaid program is stored on some backing
store medium such as a hard disc and its components (called overlay segments)
are loaded into memory only as required. In theory, this reduces the amount of
memory required to run a program at the expense of increasing the time taken to
load it and repeatedly re-load parts of it. It is a classic space-time trade-off. In
practice, except in rather special circumstances, the saving in memory accruing
from the use of overlays is rather modest and less than you might expect. Indeed,
as discussed below, overlays have rather restricted applicability under RISC OS.
Nonetheless, they can occasionally be useful when dealing with systems that have
limited memory.

Paging vs overlays

In a paged system, a program and its workspace is broken up into fixed size chunks
called pages. A combination of special hardware and operating system support
ensures that pages are loaded only when needed and that un-needed pages are
soon discarded. In principle, the author of a paged program need not be aware that
it will be paged (but this is often not true in practice if the author wishes the
program to run at maximum speed). Both code and data are paged, automatically.
In general, for single programs which re-use their workspace whenever possible,
one sees a ratio of program size plus workspace size to occupied memory size in
the region 1.5 to 3. One can always increase the ratio arbitrarily by integrating
several sequentially used programs into a single image and by never re-using
workspace. But, fundamentally, paging rarely squeezes more than a quart-sized
program into a pint-sized memory. Of course, there are other benefits of paging,
but these are beyond the scope of this section.

In contrast, an overlaid program is broken up into variable sized chunks (called
overlay segments) by the user, who also determines which of these chunks may
share the same area of memory. As the overlay system permits two code fragments
which share the same area of memory to call one another and return successfully
to the caller, this is merely a matter of performance. However, if data is included in
an overlaid segment the situation becomes more complicated and the user has
more work to do. For example, it must be ensured that all code which uses the data
resides in the same segment as the data. Furthermore, it must be acceptable that

O

373

When to use overlays
the data is re-initialised every time the segment is re-loaded. Thus, in general, it is
possible to overlay two work areas each of which is private to two distinct sets of
functions which are not simultaneously resident in memory. Overall, it would be
unusual to overlay more than a quart-sized program into a pint-sized memory,
much as with paging (you may achieve a factor as high as four for code, but
non-overlaid data will usually dilute the overall factor substantially; it all depends
on the details of your application).

A more detailed description of the low-level aspects of overlays is given in the
section Generating overlaid programs on page 156 of the Desktop Tools guide. If you are
especially interested in using overlays you may prefer to read that section next.
Otherwise, if you are more interested in when to use overlays, please read on.

When to use overlays

Overlays work best when a program has several semi-independent parts. A good
model for purposes of understanding is to think of a special-purpose command
interpreter (the root segment) which can invoke separate commands (overlay
segments) in response to user input. Consider, for example, a word processor
which consists of a text editor and a collection of printer drivers. It is clear that
each of the printer drivers can be overlaid (you are unlikely to have more than one
printer); it may even be plausible to overlay each with the editor itself (you may not
be able to edit while printing – depending on how fast the printer goes and on how
much CPU time is required to drive it). Furthermore, if the time taken to load an
overlay segment can be tacked on to an interaction with the user, it is probable that
the program will feel little slower than if it were memory-resident. In summary:
overlays work best if your program has many independent sub-functions.

On the other hand, if your program has many semi-independent parts, it may be
better to structure it as several independent programs, each called from a control
program. By using the shared C library, each program can be relatively small, and
the Squeeze utility can be used to reduce the space taken by it on backing store by
nearly a factor of 2. (See the chapter Squeeze on page 173 of the Desktop Tools guide
for details). In contrast, overlay segments cannot be squeezed (though the root
program can be). So, if you can structure your application as independent,
squeezed programs it may take up less precious disc space and load faster,
especially from a floppy disc, than if you structure it using overlays.

If adopted, this strategy will force the independent programs to communicate via
files. Provided the data to be communicated has a simple structure this causes no
problems for the application; provided it is not too voluminous, use of the RAM
filing system (RamFS) is suggested as this is fast and requires no special
application code in order to use it.
374

Overlays
So, overlays are most appropriate for applications which manipulate very large
amounts of highly structured data – Computer Aided Design applications are
archetypal here – whereas multiple independent programs are most appropriate
for applications which manipulate relatively small amounts of simply structured
data and are otherwise dominated by large amounts of code.
375

When to use overlays
376

Part 5 – Appendices
377

378

Appendix A: Changes to the C compiler

corn Computers produced five releases of the C/C++ compiler product for

RISC OS, the final one being released as part of the Desktop Development

Environment in 1994. The next release was made by Castle Technology Ltd. in
2002, adding support for 32-bit versions of RISC OS. Since 2009 the compiler and
tools have been maintained by RISC OS Open Ltd. This appendix details the
changes that have been made since the final release from Acorn.

Changes up to version 5.54
● The compiler now defaults to generating APCS-32 code and the libraries have

been updated for use in a 32-bit environment. The resulting executable is
suitable for modern processors such as the ARM9 or Intel XScale processors
which do not have a 26-bit mode, while still being suitable for older processors
such as the ARM2, ARM3, ARM6 and ARM7 families.

● The compiler and other tools may now be used in a 32-bit environment.

● Many C99 features are now available in the compiler, but note that the
standard C libraries are not C99 compliant. 64 bit integers (long long) are
supported.

● Improved compiler error messages and new warnings, The compiler now
reports which function parameter it is complaining about when one causes an
error. The compiler also generates a warning if number of parameters passed
in _swi and _swix calls does not match the specified format. Warnings may
be disabled using options described in Handling warnings and errors on page 34.

● C compiler has command line options, including -ccversion version on
page 48

● CMHG has several new command line options and keyword. See Command line
options on page 61 and The format of input to CMHG on page 341.

Changes up to version 5.56
● Added support for __packed structures and pointers. See Packed Structures on

page 82.

● Added inline assembler. See Inline assembler on page 122.

● Added Thumb interworking (-APCS /inter).

A

379

● int f() { } is now correctly treated as an old-style function.
Use int f(void) { } instead.

● Improved error reporting for function arguments.

● C99 pragmas added. See Standard pragmas on page 108.

● C99 concatenation of wide and normal string literals supported.

● Universal character name and UTF-8 support. See Implementation details on
page 78 and Universal character names on page 109.

● Support for LDRH etc added.

● -Otime and -Ospace now have more effect.

● CSE optimises long long expressions.

● Optimisation of static integer and floating const variables.

● long long shifts by constant much improved.

● All long long multiplies will now be inlined (if -cpu 3M or later and -Otime).
Can also generate SMLAL and UMLAL.

● ARMv5 BLX instruction used for faster function pointer calls.

● Other more complex function pointer forms (such as MOV lr,pc and LDR
pc,xxx) reinstated; these had been disabled at some point between 5.02 and
5.54 as a bug workaround.

● Very slow CSE analysis of complex functions (eg various cyphers) fixed.

● Header file guard #defines interpreted and handled internally (a speed
optimisation which saves having to reload header files).

● Improved compile-time evaluation of floating arithmetic.

● Able to inline more <math.h> functions. Now knows the CNF instruction.

● FPA float to double conversions no longer eliminated (for correct behaviour
with signalling NaNs and underflow traps).

● Fixes to inline functions with difficult return types.

● Trailing padding removed from structs with flexible array members.

● Constant data placed in read-only area.

● Mapping symbols ($d/$a) now placed in object file to aid DecAOF and DDT.

● long long variables now output correctly in debugging information, (requires
latest version of DDT).

● Changes to warning control options:

● -fo (to enable Old-style function) removed - it is now enabled by
default for C90 and C99 modes.
380

Changes to the C compiler
● -Wd now disables Old-style function as well as deprecated
declaration.

● Warnings that are normally off can now be enabled with, -W+.

● -W+g enables warnings about unguarded or wrongly guarded header files.

● The old -Wg option (non-constant printf format) is now -Wh.

● -Wl controls lower precision in wider context separately from
-Wn, which still controls both that and implicit narrowing cast.

● -Ws (the static initialiser in static data warning) has been
removed.

● -Wx disables declared but not used warnings.

● -W+u enables warnings about C++ keywords. This replaces the old -Wc
option, which is now obsolescent.

● Added -zz and -zt options to control data allocation. See Global data options
on page 52.

● APCS-A and APCS-M support removed.

Changes up to version 5.59
● Added support for switch on a long long expression.

● Added complex and imaginary number support (<complex.h>, including C99
Annex G).

● _Bool (and _Complex/_Imaginary) now available in pcc and C90 modes.

● MLA instruction used more often, and handled more intelligently.

● CSE aliasing optimisations take account of restrict qualifier. See Restricted
pointers on page 103.

● Optimised handling of narrow (<32 bit) data and computations.

● Will use ARMv5E's SMULxy and SMLAxy instructions where appropriate.

● Improved checking of printf/scanf format strings.

● Can now inline signbit().

● Improved compilation of (int) longlong, (int) longlong >> 32, and
longlong >> 1 or << 1. Also, long long multiplication and division by
powers of two transformed into shifts.

● Can transform integer division by constant into a 32x32->64 multiplication (if
available on CPU, and -Otime selected).

● Pointer subtraction optimised to use only multiply and/or shift.

● Added inter-statement compile-time evaluation of long long arithmetic.
381

● Improved CSE handling, especially for FP constants and comparisons.

● IEEE 754 conformance improved; generally edging the compiler closer to C99
Annex F.

● asm keyword recognised in C++ mode.

● -arch command-line parameter added. See Keyword options on page 45.

● Some improvements to treatment of volatile objects.

● Changes to handling of floating arguments for -apcs /fpregargs.

● Banner and help now sent to stderr instead of stdout.

Changes up to version 5.64
● Added instruction scheduling.

● Various other performance enhancements in low-level code generation.

● Various CSE enhancements.

● Copy-propagation optimisation added to register allocator.

● Now defaults to tuning performance for XScale, while remaining ARMv2
compatible (ie -cpu XScale -arch 2).

● BLX opcode added to inline assembler.

● Enums can now use smaller containers rather than always being int-sized.
Seet on page 34

● Some hard-coded function size limits increased.

Changes up to version 5.69
● Change to unaligned load behaviour. The default setting is now not to use

unaligned loads as a shortcut to rotate the aligned 32-bit value, because the
behaviour of unaligned loads has changed (optional in ARMv6, mandatory in
ARMv7). The same thing can be achieved on earlier versions using
-memaccess [+/-]L22[+/-]S22-L41.

● Added the following code generation and optimisation options: -arch 6k,
-arch 6t2, -arch 7 and -cpu cortex-a8. When -arch 7 or -cpu
cortex-a8 is specified, then a new set of scheduling rules are selected which
target an approximation of the Cortex-A8.

Changes up to version 5.71
● Added support for #warning to the pre-processor. See #warning directive on

page 112.

● You can now use -wz to suppress Undefined macro in #if - treated
as 0.
382

Changes to the C compiler
● Code tuning for ARM11 now available using -cpu ARM1176JZF-S.

● The built-in standard C headers now incorporate the changes from the shared
C library, up to version 5.64. This includes a correction to FOPEN_MAX as well
as support for 64-bit file pointers (see Large file support on page 121). wchar.h
and wctype.h are also included for the first time, but note that the shared C
library does not currently implement the functions defined therein.

● Static structures can now be initialised using compound literals.

Changes up to version 5.74
● Module relocation offsets are now shown correctly if a disassembly is

requested using -zM -S on the command line.

● Will use the MLS instruction for ARMv6T or later where an expression of the
form a = b - (c * d) is encountered.

● The -cpu switch now recognises architectures 2a/3g/5tewmmx/5tewmmx2/6z
for consistency with ObjAsm.

Changes up to version 5.76
● The inline assembler now permits compare operations on the PC. This allow s

the common idiom TEQ pc,pc to be used to check if the processor is in 32 bit
mode. Other ALU operations involving the PC are still faulted because the
result would be undefined.

● The inline assembler now accepts the BKPT instruction. Note that BKPT is only
available from ARMv5 and later. If no debugger is attached the processor will
cause a prefetch abort.

Changes up to version 5.78
● A new command line option, -fpu, is introduced to select the Floating Point

Unit to target.

● The -cpu switch now recognises architectures 7-a/7-r/7-a.security/8-a and
Cortex-A5/Cortex-A7/Cortex-A9/Cortex-A15 or consistency with ObjAsm.

● Using SWP[B] in the inline assembler for a -cpu or -arch that doesn’t
support that instruction will now emit a warning.

● When the option -apcs/interwork is in force __APCS_INTERWORK is now
predefined.

● The maximum size limit for a statically declared array or structure has been
increased to 16MB.
383

Changes up to version 5.83
● When -fpu None is specified any attempt to use floating point will report an

error.

● The table of known CPUs has been further extended (to closely match ObjAsm)
up to and including the Cortex-A57.

● The code generator now knows about the ARMv6/v7/v8 instruction sets. Where
appropriate and permitted by the -cpu or -arch selection it is now possible
to infer from C source code: BFC, BFI, MOVW/MOVT, NOP, REV, PKHBT/PKHTB,
SXTB/SXTH, UXTAB/SXTAB, UXTAH/SXTAH, UBFX/SBFX.

● The inline assembler now accepts all of the ARMv6/v7/v8 mnemonics, up to
and including ARMv8.4. Note that the same restrictions apply as before with
regards to mnemonics that change the stack pointer or program counter
directly, therefore use of ERET, RFE, SRS is not permitted.

● A number of Arm intrinsic functions have been made available to allow C-like
functions to produce specialist instructions without needing to resort to inline
assembler.

Changes up to version 5.88
● Added support for the extra C18 features and keywords.

● In support of C18 the built in headers <stdalign.h>, <stdnoreturn.h>
and <uchar.h> have been added, along with other appropriate additions to
the existing library headers.

● The table of known CPUs has been further extended (to closely match ObjAsm)
up to and including the Cortex-X1. The table entries for v8 now take into
account those processors which don’t support the CRC instruction and will
warn on its use in the inline assembler.
384

Appendix B: C errors and warnings

his appendix gives a brief description of the intended purposes of error and

warning messages from the CC tool, along with some hints for interpreting

them. It then lists most of the common errors in alphabetical order. It is not a
complete list. Since the messages are designed as far as possible to be
self-explanatory, some of the more simple common ones are not listed here.

Interpreting CC errors and warnings

The compiler can produce error and warning messages of several degrees of
severity. They are as follows:

● Warnings indicating curious, but legal, program constructs, or constructs that
are indicative of potential error;

● Non-serious errors that still allow code to be produced;

● Serious errors that may cause loss of code;

● Fatal errors that may stop the compiler from compiling;

● System errors that signal faults in the system itself.

Warnings from CC are intended to provide a helpful level of checking, in addition to
the level required by the ISO standard. On some other systems, such as UNIX,
separate facilities (like lint) are provided to perform this checking. Warnings flag
program constructs that may indicate potential errors, or those not recommended
because they may function differently on other machines, and hence hinder the
portability of code.

Some warnings point out the use of facilities provided in this ISO C
implementation which are above the minimum required by ISO – for example, use
of external identifiers that are identical in the first six characters, which may not be
differentiated by other systems which conform to the ISO standard.

Programs ported from other machines may cause large numbers of warning
messages from CC, which you can disable with the Suppress warnings option (see
page 34 for more information).

You can also enable additional checks with the CC and C++ Features option. This
is best done in the final stages of a project, and will help you to produce
high-quality software.

T

385

Warnings
Errors and serious errors collectively respond to ISO ‘diagnostics’; whether an error
is serious or not reflects the compiler’s view, not yours, or that of the ISO
committee.

After issuing a warning, non-serious, or serious error, CC continues compiling,
sometimes producing more such messages in the process. Compilation of C by CC
can be thought of as a pipeline process, starting with preprocessing, syntax
analysis, then semantic analysis (when the structure of a portion of code is
analysed). When syntax errors in C are encountered by CC, the compiler can often
guess what the error was, correct it, and continue. When semantic errors are found,
portions of your code are often ignored before continuing, and serious error
messages are reported.

Unfortunately, the compact and powerful nature of C leads to a high proportion of
semantic errors. Ignoring portions of your code is likely to make subsequent
portions incorrect, so one serious error can often start a cascade of error messages.
Often, therefore, it is sensible to ignore a set of error messages following a serious
error message.

If the compiler produces any message more serious than a warning, it will set a bad
return code, usually terminating any ‘make’ of which it is a part in the process. Any
serious error will cause the output object file to be deleted; fatal and system errors
cause immediate termination of compilation, with loss of the object file and bad
return code set.

Future releases of the compiler may distinguish further forms of error, or produce
slightly different forms of wording.

In pcc mode, constructs that are erroneous in ISO mode are reported, even though
legal in pcc mode.

Warnings

Warning messages indicate legal but curious C programs, or possibly unintended
constructs (unless warnings are suppressed). On detection of such a condition, the
compiler issues a warning message, then continues compilation.
386

C errors and warnings
Warning messages

'&' unnecessary for function or array xx

This is a reminder that if xx is defined as char xx[10] then xx already has a pointer
type. There is a similar reminder for function names too. Example:

static char mesg[] = "hello\n";
int main ()
{

char *p = &mesg; /* mesg is already compatible with char * */
...

actual type 'xx' mismatches format '%x'

A type error in a printf or scanf format string. Example:

{
int i;
printf("%s\n", i); /* %s need char* not int */
...

ANSI 'xx' trigraph for 'x' found – was this intended?

This helps to avoid inadvertent use of ANSI/ISO trigraphs. Example:

printf("Type ??/!!: "); /* "??/" is trigraph for "\" */

argument and old-style parameter mismatch : xx

A function with a non-ISO declaration has been called using a parameter of a
wrong data type. Example:

int fnl(a , b)
int a;
int b;
{
 return a * b;
}
...
int main()
{
 int l; float m;
 fnl(l , m); /* m should be 'int' */
 ...
387

Warnings
character sequence /* inside comment

You cannot nest comments in C. Example:

/* comment out func() for now...
/* func() returns a random number */
int func(void)
{

...
return i;

}
*/

Dangling 'else' indicates possible error

This hints that you may have mismatched your ifs and elses. Remember an
else always refers to the most recent unmatched if. Use braces to avoid
ambiguity. Example:

if (a)
 if (b)
 return 1;
 else if (c)
 return 2;
else /* this belongs to the if (a). Or does it?*/
 return 3;

Deprecated declaration of xx() – give arg types

A feature of the ISO standard is that argument types should be given in function
declarations (prototypes). ‘No arguments’ is indicated by void. Example:

extern int func(); /* should have 'void' in the parentheses */

extern clash xx , xx clash (ANSI 6 char monocase)

Using compiler Feature option e, it was found that two external names were not
distinct in the first six characters. Some linkers provide only six significant
characters in their symbol table. Example:

extern double function1 (int i);
extern char * function2 (long l);
388

C errors and warnings
extern 'main' needs to be 'int' function

This is a reminder that main() is expected to return an integer. Example:

void main()
{

...

extern xx not declared in header

Compiling with Feature h, an external object was discovered which was not
declared in any included header file.

floating point constant overflow

This is typically caused by a division by zero in a floating point constant expression
evaluated at compile time. Example:

#define lim 1
#define eps 0.01
static float a = eps/(lim-1); /* lim-1 yields 0 */

floating to integral conversion failed

A cast (possibly implicit) of a floating point constant to an integer failed at compile
time. Example:

static int i = (int) 1.0e20; /* INT_MAX is about 2e10 */

formal parameter 'xx' not declared – 'int' assumed

The declaration of a function parameter is missing. Example:

int func(a)
/*a should be declared here or within the parentheses*/
{

...

Format requires nn parameters, but mm given

Mismatch between a printf or scanf format string and its other arguments.
Example:

printf("%d, %d\n",1); /* should be two ints */

function xx declared but not used

When compiling with Feature v, the function xx was declared but not used within
the source file.
389

Warnings
Illegal format conversion '%x'

Indicates an illegal conversion implied by a printf or scanf format string.
Example:

printf("%w\n",10); /* no such thing as %w */

implicit narrowing cast : xx

An arithmetic operation or bit manipulation is attempted involving assignment
from one data type to another, where the size of the latter is naturally smaller than
that of the assigned value. Example:

double d = 1.0; long l = 2L; int i = 3;
i = d * i;
i = 1 | 3;
i = 1 & ~1;

implicit return in non-void function

A non-void function may exit without using a return statement, but won't return a
meaningful result. Example:

int func(int a)
{

int b=a*10;
.../* no return <expr> statement */

}

incomplete format string

A mistake in a printf or scanf format string. Example:

printf("Score was %d%",score); /* 2nd % should be %% */

'int xx()' assumed – 'void' intended?

If the definition of a function omits its return type – it defaults to int. You should
be explicit about the type, using void if the function doesn’t return a result.
Example:

main()
{

...
390

C errors and warnings
inventing 'extern int xx();'

The declaration of a function is missing. Example:

printf("Type your name: ");
/* forgot to #include <stdio.h> */

lower precision in wider context: xx

An arithmetic operation or bit manipulation is attempted involving assignment
from int, short or char to long. Example:

long l = 1L; int i = 2; short j = 3;
l = i & j;
l = i | 5;
l = i * j;

One circumstance in which this causes problems is when code like

long f(int x){return 1<<x;}

is moved to machines where int has 16 bits.

No side effect in void context: 'op'

An expression which does not yield any side effect was evaluated; it will have no
effect at run-time. Example:

a+b;

no type checking of enum in this compiler

Compiling with Feature x, an enum declaration was found, and this message
refers to the ISO stipulation that enum values be integers, less strictly typed than
in some earlier dialects of C.

Non-ANSI #include <xx>

A header file has been #included which is not defined in the ANSI/ISO standard.
< > should be replaced by " ".

non-portable – not 1 char in 'xx'

Assigning character constants containing more than one character to an int will
produce non-portable results. Example:

static int exitCode = 'ABEX';
391

Warnings
non-value return in a non-void function

The expression was omitted from a return statement in a function which was
defined with a non-void return type. Example:

int func(int a)

{
int b=a*10;
...
return; /* no <expr> */

}

odd unsigned comparison with 0 : xx

An attempt has been made to determine whether an unsigned variable is negative.
Example:

unsigned u , v;
if (u < 0) u = u * v;
if (u >= 0) u = u / v;

Old-style function: xx

Compiling with Feature o, it was noted that the code contains a non-ISO function
declaration. Example:

void fn2(a , b)
int a;
int b;
{ b = a; }

omitting trailing '\0' for char[nn]

The character array being equated to a string is one character too short for the
whole string, so the trailing zero is being omitted. Example:

static char mesg[14] = "(C)1988 Acorn\n";/* needs 15 */

repeated definition of #define macro xx

When compiling with Feature h, a macro has been repeatedly #defined to take the
same value.
392

C errors and warnings
shift by nn illegal in ANSI C

This is given for negative constant shifts or shifts greater than 31. On the Arm, the
bottom byte of the number given is used, ie it is treated as (unsigned char)
nn. NB: negative shifts are not treated as positive shifts in the other direction.
Example:

printf("%d\n",1<<-2);

'short' slower than 'int' on this machine (see manual)

For speed you are advised to use ints rather than shorts where possible. This is
because of the overhead of performing implicit casts from short to int in
expression evaluation. However, shorts are half the size of ints, so arrays of
shorts can be useful. Example:

{
short i,j; /* quicker to use ints */
...

spurious {} around scalar initialiser

Braces are only required around structure and array initialises. Example:

static int i = {INIT_I}; /* don't need braces */

static xx declared but not used

A static variable was declared in a file but never used in it. It is therefore
redundant.

Unrecognised #pragma (no '-' or unknown word)

#pragma directives are of the form

#pragma -xd
or
#pragma long_spelling

where x is a letter and d is an optional digit. These messages warn against unknown
letters and missing minus signs.

use of 'op' in condition context

Warns of such possible errors as = and not == in an if or looping statement.
Example:

if (a=b) {
...
393

Non-serious errors
variable xx declared but not used

This refers to an automatic variable which was declared at the start of a block but
never used within that block. It is therefore redundant. Example:

int func(int p)
{

int a; /* this is never used */
return p*100;

}

xx may be used before being set

Compiling with Feature a, an automatic variable is found to have been used
before any value has been assigned to it.

xx treated as xxul in 32-bit implementation

This message warns of two’s complement arithmetic’s dependence on assigning
negative constants to unsigned ints, and it explains that ints and long
ints are both 32 bits.

Non-serious errors

These are errors which will allow ‘working’ code to be produced – they will not
produce loss of code. On detection of such an error the compiler issues an error
message, if enabled, then continues compilation.

',' (not ';') separates formal parameters

Incorrect punctuation between function parameters. Example:

extern int func(int a;int b);

ANSI C does not support 'long float'

This used to be a synonym for double, but is not allowed in ANSI/ISO C.

ancient form of initialisation, use '='

An obsolete syntax for initialisation was used, or incorrectly nested brackets have
been found. Example:

int i{1}; /* use int i=1; */
394

C errors and warnings
array [0] found

The minimum subscript count allowed is 1. (Remember that the subscripts go from
0 - n–1.) Example:

static int a[0];

array of xx illegal – assuming pointer

Illegal objects have been declared to occupy an array. Examples:

int fn2[5](); /* array of functions */
void v[10]; /* array of voids */

assignment to 'const' object 'xx'

You can’t assign to objects declared as const. Example:

{
const int ic = 42; /* initialisation ok */
ic = 69; /* can't change it now */
...

comparison 'op' of pointer and int:
literal 0 (for == and !=) is the only legal case

You cannot use the comparison operators between an integer and a pointer type.
As the message implies, you can only check for a pointer being (not) equal to NULL
(int 0). Example:

{
int i,j,*ip;
j = i>ip; /* can't compare an int and an int * */
...

declaration with no effect

The compiler detected what appeared to be a declaration statement, but which
resulted in no store being allocated. This may imply that a data type name was
omitted.
395

Non-serious errors
differing pointer types: 'xx'

An illegal implicit type cast was detected in a comparison operation between two
pointers of different types. Example:

{
int *ip;
char *cp;
printf("%d\n", ip==cp); /* can't compare these */
...

differing redefinition of #define macro xx

#define gives a definition contradicting that already assigned to the named macro.

ellipsis (...) cannot be only parameter

Although C allows variable length argument lists, the ‘...’ parameter cannot
stand alone in this function declaration. Example:

void fnl(...) { }

expected 'xx' or 'x' - inserted 'x' before 'yy'

Often caused by omitting a terminating symbol in a statement when the compiler
is able to insert this symbol for you, and then to recover. Example:

int f(int j)
{
 return j;
}
int main()
{
 int i=f(10; /* ')' omitted here */
 return i;
}

formal name missing in function definition

This error occurs when a comma in a function definition led the compiler to
suspect a further formal parameter was going to follow, but none did. Example:

int a(int b,) /* missing parameter */
{

...
396

C errors and warnings
function prototype formal 'xx' needs type or class – 'int'
assumed

A formal parameter in a function prototype was not given a type or class. It needs
at least one of these (register being the only allowed class). Example:

void func(a); /* I mean int a or perhaps register a */

function returning xx illegal – assuming pointer

A function apparently intends to return an illegal object. Example:

int fn3()[] /* hoping to return an array */
{
 int list[3] = {1,2,3};
 return list;
}

function xx may not be initialised – assuming function
pointer

A function is not a variable, so cannot be initialised. As an attempt to initialise xx
has been made, xx is treated as of type function *. Example:

extern int func(void);
static int fn() = func; /* the compiler will use

 static int (*fn)() = func; instead */

<int> op <pointer> treated as <int> op (int)<pointer>

Warns of an illegal implicit cast within an expression. Typically op is an operator
which has no business being used on pointers anyway, such as | or dyadic *.
Example:

{
int i, *ip;
i = i | ip; /* bitwise-or on a pointer?! */
...

junk at end of #xx line – ignored

The xx is either else or endif. These directives should not have anything
following them on the line. Example:

/* text after the #else should be a comment */
#else if it isn't defined
...
397

Non-serious errors
L'...' needs exactly 1 wide character

The wchar_t declaration of a wide character names an identifier comprising other
than one character. Example:

wchar_t wc = L'abc';

linkage disagreement for 'xx' – inconsistent '__global_reg'
usage

You have attempted to declare a variable with both __global_reg and either
static or extern linkage.

linkage disagreement for 'xx' – treated as 'xx'

There was a linkage type disagreement for declarations, eg a function was declared
as extern then defined later in the file as static. Example:

int func(int a); /* compiler assumes extern here */
...
static func(int a) /* but told static here */
{

...

more than 4 chars in character constant

A character constant of more than four characters cannot be assigned to a 32 bit
int. Example:

{
int i = '12345'; /* more than four chars */
...

no chars in character constant ''

At least one character should appear in a character constant. The empty constant
is taken as zero. Example:

{
int i = ''; /* less than one char == '\0' */
...

objects that have been cast are not l-values

The programmer tried to use a cast expression as an l-value. Example:

char *p;
*((int *)p)=10; /* (int *)p is NOT an l-value */
398

C errors and warnings
omitted <type> before formal declarator – 'int' assumed

This is given in a formal parameter declaration where a type modifier is given but
no base type. Example:

int func(*a); /* a is a pointer, but to what? */

'op': cast between function pointer and non-function object

Casts between function and object pointers can be very dangerous! One possibly
valid (but still very suspect) use is in casting an array of int into which machine
code has been loaded into a function pointer. Example:

static int mcArray[100];
/*pointer to function returning void*/
typedef void (*pfv)(void);

...
 ((pfv)mcArray)(); /* convert to fn type and apply */

'op': implicit cast of non-0 int to pointer

Zero, equal to a NULL pointer, is the only int which can be legally implicitly cast
to a pointer type. Example:

{
int i, *ip;
ip = i; /* only the constant int 0 can be implicitly

cast to a pointer type */
...

'op': implicit cast of pointer to non-equal pointer

An illegal implicit cast has been detected between two different pointer types. The
type casting must be made explicit to escape this error. Example:

{
int *ip;
char *cp;
ip = cp; /* differing pointer types */
...

'op': implicit cast of pointer to 'int'

An illegal implicit cast has been detected between an integer and a pointer. Such
casts must be made explicitly. Example:

{
int i, *ip;
i = ip; /* pointer must be cast explicitly */
...
399

Non-serious errors
overlarge escape '\\xxxx' treated as '\\xxx'

A hexadecimal escape sequence is too large. Example:

int novalue()
{
 if (seize) return '\xfff'; /* \xfff' too large */
 else return '\xff';
}

overlarge escape '\\x' treated as '\\x'

An octal escape sequence is too large. Example:

int novalue()
{
 if (huit) return '\777'; /* \777 too large */
 else return '\77';
}

<pointer> op <int> treated as (int)<pointer> op <int>

The only legal operators allowed in this context are + and -.

prototype and old-style parameters mixed

Use has been made of both the ISO style function/definition (including a type
name for formal parameters in a function’s heading) and pcc style parameters lists.
Example:

void fn4(a, int b)
int a;
{
 a = b;
}

references to non-const static data are not supported when
using -zM with APCS /noswst

Code generated with the -zM switch uses the stack limit register to locate its static
data, but you have specified a calling standard that does not use a stack limit
register.
400

C errors and warnings
'register' attribute for 'xx' ignored when address taken

Addresses of register variables cannot be calculated, so an address being taken of
a variable with a register storage class causes that attribute to be dropped.
Example:

{
register int i, *ip;
ip = &i; /* & forces i to lose its register attribute */
...

return <expr> illegal for void function

A function declared as void must not return with an expression. Example:

void a(void)
{

...
return 0;

}

size of 'void' required – treated as 1

This indicates an attempt to do pointer arithmetic on a void *, probably
indicating an error. Example:

{
void *vp;
vp++; /* how many bytes to increment by ? */
...

size of a [] array required – treated as [1]

If an array is declared as having an empty first subscript size, the compiler cannot
calculate the array’s size. It therefore assumes the first subscript limit to be 1 if
necessary. This is unlikely to be helpful.

extern int array[][10];
static int s = sizeof(array); /*can't determine this*/
401

Non-serious errors
sizeof <bit field> illegal – sizeof(int) assumed

Bitfields do not necessarily occupy an integral number of bytes but they are always
parts of an int, so an attempt to take the size of a bitfield will return
sizeof(int). Example:

struct s {
int exp : 8;
int mant : 23;
int s : 1;

};
int main(void)
{

struct s st;
int i = sizeof(st.exp); /* can't obtain this in bytes */
...

Small (single precision) floating value converted to 0.0
Small floating point value converted to 0.0

A floating point constant was so small that it had to be converted to 0.0. Example:

static float f = 1.0001e-38 – 1.0e-38; /* 1e-42 too small for float */

Spurious #elif ignored
Spurious #else ignored
Spurious #endif ignored

One of these three directives was encountered outside any #if or #ifdef scope.
Example:

#if defined sym
...
#endif
#else /* this one is spurious */
...

static function xx not defined – treated as extern

A prototype declares the function to be static, but the function itself is absent from
this compilation unit.

string initialiser longer than char [nn]

An attempt was made to initialise a character array with a string longer than the
array. Example:

static char str[10] = "1234567891234";
402

C errors and warnings
struct component xx may not be function – assuming function
pointer

A variable such as a structure component cannot be declared to have type
function, only function *. Example:

struct s {
int fn();/* compiler will use int (*fn)(); */
char c;

};

type or class needed (except in function definition) – int
assumed

You can’t declare a function or variable with neither a return type nor a storage
class. One of these must be present. Examples:

func(void); /* need, eg, int or static */
x;

Undeclared name, inventing 'extern int xx'

The name xx was undeclared, so the default type extern int was used. This may
produce later spurious errors, but compilation continues. Example:

int main(void) {
int i = j; /*j has not been previously declared*/
...

unprintable character xx found – ignored

An unrecognised character was found embedded in your source – this could be file
corruption, so back up your sources! Note that ‘unprintable character’ means any
non-whitespace, non-printable character.

variable xx may not be function – assuming function pointer

A variable cannot be declared to have type function, only function *.
Example:

int main(void)
{

auto void fn(void); /* treated as void (*fn)(void);*/
...
403

Serious errors
xx may not have whitespace in it

Tokens such as the compound assignment operators (+= etc) may not have
embedded whitespace characters in them. Example:

{
int i;
...
i + = 4; /* space not allowed between + and = */
...

Serious errors

These are errors which will cause loss of generated code. On detection of such an
error, the compiler will attempt to continue and produce further diagnostic
messages, which are sometimes useful, but will delete the partly produced object
file.

'...' must have exactly 3 dots

This is caused by a mistake in a function prototype where a variable number of
arguments is specified. Example:

extern int printf(const char *format,....); /*one . too many*/

'{' of function body expected – found 'xx'

This is produced when the first character after the formal parameter declarations of
a function is not the { of the function body. Example:

int func(a)
int a;

if (a) ... /* omitted the { */

'{' or <identifier> expected after 'xx', but found 'yy'

xx is typically struct or union, which must be followed either by the tag
identifier or the open brace of the field list. Example:

struct *fred; /* Missed out the tag id */
404

C errors and warnings
'xx' variables may not be initialised

A variable is of an inappropriate class for initialisation. Example:

int main()
{
 extern int n=1;
 return 1;
}

'op': cast to non-equal 'xx' illegal
'op': illegal cast of 'xx' to pointer
'op': illegal cast to 'xx'

These errors report various illegal casting operations. Examples:

struct s {
int a,b;

};
struct t {

float ab;
};
int main(void)
{

int i;
struct s s1;
struct t s2;

/* '=': illegal cast to 'int' */
i = s1;

/* '=': illegal cast to non-equal 'struct' */
s1 = s2;

/* <cast>: illegal cast of 'struct' to pointer */
i = *(int *) s1;

/* <cast>: illegal cast to 'int' */
i = (int) s2;
...

'op': illegal use in pointer initialiser

(Static) pointer initialisers must evaluate to a pointer or a pointer constant plus or
minus an integer constant. This error is often accompanied by others. Example:

extern int count;
static int *ip = &count*2;

{} must have 1 element to initialise scalar

When a scalar (integer or floating type) is initialised, the expression does not have
to be enclosed in braces, but if they are present, only one expression may be put
between them. Example:

static int i = {1,2}; /* which one to use? */
405

Serious errors
Array size nn illegal – 1 assumed

Arrays have a maximum dimension of 0xffffff. Example:

static char dict[0x1000000]; /* Too big */

attempt to apply a non-function

The function call operator () was used after an expression which did not yield a
pointer to function type. Example:

{
int i;
i();
...

Bit fields do not have addresses

Bitfields do not necessarily lie on addressable byte boundaries, so the & operator
cannot be used with them. Example:

struct s {
int h1,h2 : 13;

};
int main(void)
{

struct s s1;
short *sp = &s1.h2; /* can't take & of bit field */
...

Bit size nn illegal – 1 assumed

Bitfields have a maximum permitted width of 32 bits as they must fit in a single
integer. Example:

struct s {
int f1 : 40; /* This one is too big */
int f2 : 8;

};

'break' not in loop or switch – ignored

A break statement was found which was not inside a for, while or do loop or
switch. This might be caused by an extra }, closing the statement prematurely.
Example:

int main(int argc)
{

if (argc == 1)
break;

...
406

C errors and warnings
'case' not in switch – ignored

A case label was found which was not inside a switch statement. This might be
caused by an extra }, closing the switch statement prematurely. Example:

void fn(void)
{

case '*': return;
...

<command> expected but found a 'op'

This error occurs when a (binary) operator is found where a statement or
side-effect expression would be expected. Example:

if (a) /10; /* mis-placed) perhaps? */
...

'continue' not in loop – ignored

A continue statement was found which was not inside a for, while or do loop.
This might be caused by an extra }, closing the loop statement prematurely.
Example:

while (cc) {
if (dd) /* intended a { here */

error();
} /*this closes the while */
if (ee)

continue;
}

'default' not in switch – ignored

A default label was found which was not inside a switch statement. This might
be caused by an extra }, closing the switch statement prematurely. Example:

switch (n) {
case 0:

return fn(n);
case 1: if (cc)

return -1;
 else

 break;
} /* spurious } closes the switch */
default:

error();
}

407

Serious errors
duplicated case constant: nn

The case label whose value is nn was found more than once in a switch
statement. Note that nn is printed as a decimal integer regardless of the form the
expression took in the source. Example:

switch (n) {
case ' ':
...
case ' ':
...

}

duplicate 'default' case ignored

Two cases in a single switch statement were labelled default. Example:

switch (n) {
default:
...
default:
...

}

duplicate definition of 'struct' tag 'xx'

There are duplicate definitions of the type struct xx {...} ;. Example:

struct s { int i,j;};
struct s {float a,b;};

duplicate definition of 'union' tag 'xx'

There are duplicate definitions of the type union xx {...} ;. Example:

union u {int i; char c[4];};
union u {double d; char c[8];};

duplicate type specification of formal parameter 'xx'

A formal function parameter had its type declared twice, once in the argument list
and once after it. Example:

void fn(int i)
int i; /* this one is redundant */
{

...
408

C errors and warnings
EOF in comment
EOF in string
EOF in string escape

These all refer to unexpected occurrences of the end of the source file.

Expected <identifier> after 'xx' but found 'xx'
expected 'xx' – inserted before 'yy'

This typically occurs when a terminating semi-colon has been omitted before a }.
(Common amongst Pascal programmers) Another case is the omission of a closing
bracket of a parenthesised expression. Examples:

int fn(int a, int b, int c)
{

int d = a*(b+c; /* missing) */
return d /* missing ; */

}

Expecting <declarator> or <type>, but found 'xx'

xx is typically a punctuation character found where a variable or function
declaration or definition would be expected (at the top level). Example:

static int i = MAX;+1; /* spurious ; ends expression */

<expression> expected but found 'op'

Similar to above. An operator was found where an operand might reasonably be
expected. Example:

func(>>10); /* missing left hand side of >> */

grossly over-long floating point number

Only a certain number of decimal digits are needed to specify a floating point
number to the accuracy that it can be stored to. This number of digits was
exceeded by an unreasonable amount.

grossly over-long number

A constant has an excessive number of leading zeros, not affecting its value.
409

Serious errors
hex digit needed after 0x or 0X

Hexadecimal constants must have at least one digit from the set 0-9, a-f, A-F
following the 0x. Example:

int i = 0xg; /* illegal hex char */

<identifier> expected but found 'xx' in 'enum' definition

An unexpected token was found in the list of identifiers within the braces of an
enum definition. Example:

enum colour {red, green, blue,;}; /* spurious ; */

identifier (xx) found in <abstract declarator> - ignored

The sizeof() function and cast expressions require abstract declarators, ie types
without an identifier name. This error is given when an identifier is found in such a
situation. Examples:

i = (int j) ip; /* trying to cast to integer */
l = sizeof(char str[10]); /* probably just mean sizeof(str) */

illegal bit field type 'xx' – 'int' assumed

Int (signed or unsigned) is the only valid bitfield type in ISO-conforming
implementations. Example:

struct s { char a : 4; char b : 4;};

illegal in case expression (ignored): xx
illegal in constant expression: xx
illegal in floating type initialiser: xx

All of these errors occur when a constant is needed at compile time but a variable
expression was found.

illegal in l-value: 'enum' constant 'xx'

An incorrect attempt was made to assign to an enum constant. This could be
caused by misspelling an enum or variable identifier. Example:

enum col {red, green, blue};
int fn()
{

int read;
red = 10;
...
410

C errors and warnings
illegal in the context of an l-value: 'xx'
illegal in lvalue: function or array 'xx'

An incorrect attempt was made to assign to xx, where the object in question is not
assignable (an l-value). You can’t, for example, assign to an array name or a
function name. Examples:

{
int a,b,c;
a ? b : c = 10; /* ?: can't yield l-values. */
if (a) /* use this instead */

b = 10;
else

c = 10;
...

or, in the same context,

*(a ? &b: &c) = 10;

illegal in static integral type initialiser: xx

A constant was needed at compile time but a suitable expression wasn’t found.

illegal types for operands : 'op'

An operation was attempted using operands which are unsuitable for the operator
in question. Examples:

{
struct {int a,b;} s;
int i;
i = *s; /* can't indirect through a struct */
s = s+s; /* can't add structs */
...

incomplete type at tentative declaration of 'xx'

An incomplete non-static tentative definition has not been completed by the end
of the compilation unit. Example:

int incomplete[];
...
/* should be completed with a declaration like: */
/* int incomplete[SOMESIZE]; */
411

Serious errors
junk after #if <expression>
junk after #include "xx"
junk after #include <xx>

None of these directives should have any other non-whitespace characters
following the expression/filename. Example:

#include <stdio.h> this isn't allowed

label 'xx' has not been set

An attempt has been made to use a label that has not been declared in the current
scope, after having been referenced in a goto statement. Example:

int main(void)
{

goto end;
}

misplaced '{' at top level – ignoring block

{ } blocks can only occur within function definitions. Example:

/* need a function name here */
{

int i;
...

misplaced 'else' ignored

An else with no matching if was found. Example:

if (cc) /* should have used { } */
i = 1;
j =2;

else
k = 3;

...

misplaced preprocessor character 'xx'

Usually a typing error; one of the characters used by the preprocessor was detected
out of context. Example:

char #str[] = "string"; /* should be char *str[] */

missing #endif at EOF

A #if or #ifdef was still active at end of the source file. These directives must
always be matched with a #endif.
412

C errors and warnings
missing '"' in pre-processor command line

A line such as #include "name has the second " missing.

missing ')' after xx(... on line nn

The closing bracket (or comma separating the arguments) of a macro call was
omitted. Example:

#define rdch(p) {ch=*p++;}
...
{

rdch(p /* missing) */
...

missing ',' or ')' after #define xx(...

One of the above characters was omitted after an identifier in the macro parameter
list. Example:

#define rdch(p {ch = *p++;}

missing '<' or '"' after #include

A #include filename should be within either double quotes or angled brackets.

missing hex digit(s) after \x

The string escape \x is intended to be used to insert characters in a string using
their hexadecimal values, but was incorrectly used here. It should be followed by
between one and three hexadecimal digits. Example:

printf("\xxx/"); /* probably meant "\\xxx/" */

missing identifier after #define
missing identifier after #ifdef
missing identifier after #undef

Each of these directives should be followed by a valid C identifier. Example:

#define @ at

missing parameter name in #define xx(...

No identifier was found after a , in a macro parameter list. Example:

#define rdch(p,) {ch=*p++;}
413

Serious errors
no ')' after #if defined (...

The defined operator expects an identifier, optionally enclosed within brackets.
Example:

#if defined(debug

no identifier after #if defined

See above.

non static address 'xx' in pointer initialiser

An attempt was made to take the address of an automatic variable in an expression
used to initialise a static pointer. Such addresses are not known at
compile-time. Example:

{
int i;
static int *ip = &i; /*&i not known to compiler*/
...

non-formal 'xx' in parameter-type-specifier

A parameter name used to declare the parameter types did not actually occur in
the parameter list of the function. Example:

void fn(a)
int a,b;
{

...

number nn too large for 32-bit implementation

An integer constant was found which was too large to fit in a 32 bit int. Example:

static int mask = 0x800000000; /*0x80000000 intended?*/

objects or arrays of type void are illegal

void is not a valid data type.
414

C errors and warnings
overlarge floating point value found
overlarge (single precision) floating point value found

A floating point constant has been found which is so large that it will not fit in a
floating point variable. Examples:

float f = 1e40; /* largest is approx 1e38 for float */
double d = 1e310; /* and 1e308 for double */

quote (" or ') inserted before newline

Strings and character constants are not allowed to contain unescaped newline
characters. Use \<nl> to allow strings to span lines. Example:

printf("Total =

re-using 'struct' tag 'xx' as 'union' tag

There are conflicting definitions of the type struct xx {...} ; and union xx
{...} ;. Structure and union tags currently share the same name-space in C.
Example:

struct s {int a,b;};
...
union s (int a; double d;};

re-using 'union' tag 'xx' as 'struct' tag

As above.

size of struct 'xx' needed but not yet defined

An operation requires knowledge of the size of the struct, but this was not defined.
This error is likely to accompany others. Example:

{
struct s; /* forward declaration */
struct s *sp; /* pointer to s */
sp++; /* need size for inc operation */
...

size of union 'xx' needed but not yet defined

See above.
415

Serious errors
storage class 'xx' incompatible with 'xx' – ignored

An attempt was made to declare a variable with conflicting storage classes.
Example:

{
static auto int i; /* contradiction in terms */
...

storage class 'xx' not permitted in context xx – ignored

An attempt was made to declare a variable whose storage class conflicted with its
position in the program. Examples:

register int i; /* can't have top-level regs */
void fn(a)
static int a; /* or static parameters */
{

...

struct 'xx' must be defined for (static) variable
declaration

Before you can declare a static structure variable, that structure type must have
been defined. This is so the compiler knows how much storage to reserve for it.
Examples:

static struct s s1; /* s not defined */
struct t;
static struct t t1; /* t not defined */

struct/union 'xx' not yet defined – cannot be selected from

The structure or union type used as the left operand of a . or → operator has not
yet been defined so the field names are not known. Example:

{
struct s s1; /* forward reference */
s1.a = 12; /* don't know field names yet */
...
416

C errors and warnings
too few arguments to macro xx(... on line nn
too many arguments to macro xx(... on line nn

The number of arguments used in the invocation of a macro must match exactly
the number used when it was defined. Example:

#define rdch(ch,p) while((ch = *p++)==' ');
...

rdch(ptr);/* need ptr and ch */
...

too many initialisers in {} for aggregate

The list of constants in a static array or structure initialiser exceeded the number of
elements/fields for the type involved. Example:

static int powers[8] = {0,1,2,4,8,16,32,64,128};

type 'xx' inconsistent with 'xx'
type disagreement for 'xx'

Conflicting types were encountered in function declaration (prototype) and its
definition. Example:

void fn(int);
...
int fn(int a)
{

...

A pernicious error of this type is caused by mixing ISO and old-style function
declarations. Example:

int f(char x);
int f(x)char x;
{
 ...

typedef name 'xx' used in expression context

A typedef name was used as a variable name. Example:

typedef char flag;
...
{

int i = flag;
417

Serious errors
undefined struct/union 'xx' cannot be member

A struct/union not already defined cannot be a member of another
struct/union. In particular this means that a struct/union cannot be a
member of itself: use pointers for this. Example:

struct s1 {
struct s2 type; /* s2 not defined yet */
int count;

};

unknown preprocessor directive : #xx

The identifier following a # did not correspond to any of the recognised
pre-processor directives. Example:

#asm /* not an ISO directive */

uninitialised static [] arrays illegal

Static [] arrays must be initialised to allow the compiler to determine their size.
Example:

static char str[]; /* needs {} initialiser */

union 'xx' must be defined for (static) variable declaration

Before you can declare a static union variable, that union type must have been
defined. Example:

static union u u1; /* compiler can't ascertain size */

'while' expected after 'do' – found 'xx'

The syntax of the do statement is do statement while (expression).
Example:

do /* should put these statements in {} */
l = inputLine();
err = processLine(l);/*finds err, not while */

while (!err);
418

C errors and warnings
Fatal errors

These are causes for the compiler to give up compilation. Error messages are
issued and the compiler stops.

compiler too old: this is version x.xx, code requires
version x.xx or later

The command line option -ccversion version on page 49 was used to
specify that a later version of the compiler is required to compile the code.

couldn't create object file 'file'

The compiler was unable to open or write to the specified output code file, perhaps
because it was locked or the o directory does not exist.

macro args too long

Grossly over-long macro arguments, possibly as a result of some other error.

macro expansion buffer overflow

Grossly over-complicated macros were used, possibly as a result of some other
error.

out of store (in cc_alloc)

The compiler has run out of memory – either shorten your source programs, or free
some RAM by, for example, quitting some other applications.

If running under the desktop, you can use the Task Manager to increase your
wimpslot size.

too many errors

More than 100 serious errors were detected.
419

System errors
System errors

There are some additional error messages that can be generated by the compiler if
it detects errors in the compiler itself. It is very unusual to encounter this type of
error. If you do, note the circumstances under which the error was caused and
contact RISC OS Open.

These error messages all look like this:

Internal inconsistency: either resource shortage or compiler fault. If you
cannot alter your program to avoid this failure, please contact your supplier.
420

Appendix C: C++ errors and warnings

his appendix contains the text and explanation for all ‘not implemented’

messages produced by the C++ Language System Release 3.0. They are listed

here in alphabetical order.

Each message is preceded by a file name, a line number, and the text ‘not
implemented’. A complete error has this syntax:

"file", line n: not implemented: message

where the message is as used in the headings below. The line number is usually the
line on which a problem has been diagnosed.

A ‘not implemented’ message is issued when Release 3.0 encounters a legal
construct for which it cannot generate code. Because code is not generated, ‘not
implemented’ messages cause the CC command to fail, and the program is not
linked. Release 3.0 does, however, attempt to examine the rest of your program for
other errors.

‘Not implemented’ messages

actual parameter expression of type string literal

A template is instantiated with a sting literal actual argument:

template <char* s> struct S {/*...*/};

S<"hello world"> svar;

"file", line 3: not implemented: actual parameter expression of type string
literal

address of bound member as actual template argument

A template is instantiated with the address of a class member bound to an actual
class object:

template <int *pi> class x {};
class y { public: int i; } b;

x< &b.i > xi;

"file", line 4: not implemented: address of bound member (& ::b . y::i) as
actual template argument

T

421

‘Not implemented’ messages
& of op

This message should not be produced.

1st operand of .* too complicated

The first operand of a function call expression involves a pointer to a member
function and is an expression that may have side effects or may require a
temporary.

struct S { virtual int f(); };
int (S::*pmf)() = &S::f;
S *f();
int i = (f()->*pmf)();

"file", line 5: not implemented: 1st operand of .* too complicated

2nd operand of .* too complicated

The second operand of a pointer to member operator is an expression that has side
effects.

struct S { int f(); };
int (S::*pmf)() = &S::f;
S *sp = new S;
int i = 5;
int j = (sp->*(i+=5, pmf))();

"file", line 5: not implemented: 2nd operand of .* too complicated

call of virtual function function before class has been completely declared

class x {
public:

virtual x& f();
int foo(x t = pt->f());

private:
static x* pt;
int i;

};

"file", line 6: not implemented: call of virtual function x::f() before class
x has been completely declared - try moving call from argument list into
function body or make function non-virtual

cannot expand inline function function with for statement in inline

A for statement appears in the definition of an inline function.

struct S {
int s[100];
S() { for (int i = 0; i < 100; i++) s[i] = i; }

};

"file", line 1: not implemented: cannot expand inline function S::S() with for
statement in inline
422

C++ errors and warnings
cannot expand inline function function with statement after "return"

A value-returning inline function contains a statement following a return
statement.

inline int f(int i) {
if (i) return i;
return 0;

}

"file", line 4: not implemented: cannot expand inline function f() with
statement after "return"

cannot expand inline function function with two local variables with the same
name (name)

Two variables with the same name and different types are declared within the body
of a value-returning inline function.

inline int f(int i) {
{ int x = i; }
{ double x = i; }
return 0;

}

"file", line 5: not implemented: cannot expand inline function f() with two
local variables with the same name (x)

cannot expand inline function needing temporary variable of array type

An inline function that contains a local declaration of an array object is called.

inline int f(int i) {
int a[1];
a[0] = i;
return i;

}
int v = f(0);

"file", line 6: not implemented: cannot expand inline function needing
temporary variable of array type

cannot expand inline function with return in if statement

This message should not be produced.

cannot expand inline function with static name

An inline function contains the declaration of a static object.

inline void f() {
static int i = 5;

}

"file", line 2: not implemented: cannot expand inline function with static i
423

‘Not implemented’ messages
cast of non-integer constant

A cast of a non-integer constant as an actual parameter to a template class.

template <int i> class x;
int yy;

x< (int)&yy > xi;

"file", line 4: not implemented: cast of non-integer constant

cannot expand inline void function called in comma expression

A call of an inline void function that cannot be translated into an expression
(that is, one that includes a loop, a goto, or a switch statement) appears as the
first operand of a comma operator.

int i;
inline void f() { for (;;) ; }
void g() { for (f(), i = 0; i < 10; i++) ; }

"file", line 3: not implemented: cannot expand inline void f() called in comma
expression

cannot expand inline void function called in for expression

A call of an inline void function that cannot be translated into an expression
(that is, one that includes a loop, a goto, or a switch statement) appears in the
second expression of a for statement.

void inline f() { for (;;) ; } void g() { for (;; f()) ; }

"file", line 2: not implemented: cannot expand inline void f() called in for
expression

cannot expand value-returning inline function with call of ...

A value-returning inline function is defined, and it contains a call to another inline
function that is not value-returning.

inline void f() { for(;;) ; }
inline int g() { f(); return 0; }

"file", line 2: not implemented: cannot expand value-returning inline g() with
call of non-value-returning inline f()
424

C++ errors and warnings
cannot merge lists of conversion functions

A derived class with multiple bases is declared and there are conversion operators
declared in more than one of the base classes.

struct B1 {
operator int();

};
struct B2 {

operator float();
};
struct D : public B1, public B2 { };

"file", line 7: not implemented: cannot merge lists of conversion functions

catch

The keyword catch appears; catch is reserved for future use.

int catch;

"file", line 1: not implemented: catch
"file", line 1: warning: name expected in declaration list

class defined within sizeof

A class or union definition appears as the type name in a sizeof expression.

int i = sizeof (struct S { int i; });

"file", line 1: not implemented: class defined within sizeof
"file", line 1: error: S undefined, size not known

class hierarchy too complicated

This message should not be produced.

conditional expression with type

The second and third operands of a conditional expression are member functions
or pointers to members.

struct S { int i, j; };
void f(int i) {

int S::*pmi = i ? &S::i : &S::j;
}

"file", line 3: not implemented: conditional expression with int S::*
425

‘Not implemented’ messages
constructor needed for argument initializer

The default value for an argument is a constructor or is an expression that invokes
a constructor.

struct S { S(int); };
int f(S = S(1));
int g(S = 5);

"file", line 2: not implemented: constructor as default argument
"file", line 3: not implemented: constructor needed for argument initializer

copy of member[], no memberwise copy for class

An implementation-generated copy operation for a class X is required, but the
operation cannot be generated because X has an array member whose type is a
class with either a virtual base class or its own defined copy operation. The
workaround is to add a memberwise copy operator to X.

struct S1 {};
struct S2 : S1 { S2& operator=(const S2&); };
struct X { S2 m[1]; };
X var1;
X var2 = var1;

"file", line 5: not implemented: copy of S2[], no memberwise copy for S2

default argument too complicated

A default argument in a declaration not at file scope requires the generation of a
temporary.

struct S {
S();
int f(const int &r = 1);

};

"file", line 3: not implemented: default argument too complicated
"file", line 3: not implemented: needs temporary variable to evaluate argument
initializer

ellipsis (...) in argument list of template function name

An ellipsis is used in a template function declaration:

template <class T> f(T, ...);

"file", line 1: not implemented: ellipsis (...) in argument list of template
function f()
426

C++ errors and warnings
explicit template parameter list for destructor of specialized template class
name

Explicit template parameters are included in declaration of a specialised class’
destructor:

template <class T> struct S { /*...*/ };

struct S<int> {
~S<int>();

};

"file", line 4: not implemented: explicit template parameter list for
destructor of specialized template class S <> -- please drop the parameter
list

Instead, declare the specialised destructor as follows:

template <class T> struct S { /*...*/ };

struct S<int> {
~S();

};

formal type parameter name used as base class of template

The formal type parameter is used as the base class of a template class:

template <class T> struct S : public T {/*...*/};

"file", line 1: not implemented: formal type parameter T used as base class of
template

forward declaration of a specialized version of template name

A forward declaration of a specialised, rather than generalised template:

template <class T> struct S; struct S<int>;

"file", line 2: not implemented: forward declaration of a specialized version
of template S <int >

general initializer in initializer list

The initialiser list in a declaration contains an expression that cannot easily be
evaluated at compile time or that requires runtime evaluation.

int f();
int i[1] = { f() };

"file", line 2: not implemented: general initializer in initializer list
427

‘Not implemented’ messages
initialization of name (automatic aggregate)

An aggregate at local scope is initialised. This message is not issued if the +a1
option (produces declarations acceptable to an ANSI C compiler) is specified.

void f() {
int i[1] = {1};

}

"file", line 2: not implemented: initialization of i (automatic aggregate)

initialization of union with initializer list

An object of union type is initialised with an initialiser list. This message is not
issued if the +a1 option (produces declarations acceptable to an ANSI C compiler)
is specified.

union U { int i; float f; };
U u = {1};

"file", line 2: not implemented: initialization of union with initializer list

initializer for class member array with constructor

This message should always be accompanied by an error message. The ‘not
implemented’ message is inappropriate and should not be reported.

initializer for local static too complicated

This message should not be produced.

initializer for multi-dimensional array of objects of class class with constructor
name

A multi-dimensional array of a class with a constructor has an explicit initialiser.

struct S { S(int); };
S s[2][2] = {1,2,3,4};

"file", line 2: not implemented: initializer for multi-dimensional array of
objects of class S with constructor ::s
428

C++ errors and warnings
implicit static initializer for multi-dimensional array of objects of class with
constructor

class x {
public:

x() ;
};

main() {
static x xx[10][20];
}

"file", line 7: not implemented: implicit static initializer for multi-
dimensional array of objects of class x with constructor

initializer list for local variable name

This message should not be produced.

label in block with destructors

A labelled statement appears in a block in which an object with a destructor exists.

struct S { S(int); ∼S(); };
void f() {

S s(5);
xyz: ;
}

"file", line 5: not implemented: label in block with destructors

local class name within template function

A local class is defined inside a template function. A similar message is issued for
local enums and local typedefs defined inside a template function:

template <class T> f() {
class l {/*...*/};
enum E {/*...*/};
typedef int* ip;

};

"file", line 2: not implemented: local class l (local to f()) within template
function
"file", line 3: not implemented: local enum E(local to f()) within template
function
"file", line 4: not implemented: local typedef ip within template function
429

‘Not implemented’ messages
local static class name (type)

A static array of objects of a class with a constructor is declared at local scope.

class S {
public:

S();
};
void f() {

static S s[9];
}

"file", line 2: not implemented: local static class s (S [9])

local static name has class::∼class() but no constructor (add class:: class())

A static class object with a destructor, but no constructor, appears at local scope.

struct S { ~S(); };
void f() { static S s; }

"file", line 1: warning: S has S::~S() but no constructor
"file", line 2: not implemented: local static s has S::~S() but no constructor
(add S:: S())

lvalue op too complicated

This message should not be produced.

needs temporary variable to evaluate argument initializer

A default argument requires a temporary variable.

void f() {
int g(const int& = 5);

}

"file", line 2: not implemented: needs temporary variable to evaluate argument
initializer

nested class type as parameter type to template class name

A nested class is used as the actual parameter for a template class instantiation:

template <class T> struct S;

struct outer {
struct inner {};

};

S<outer::inner> svar;

"file", line 7: not implemented: nested class outer::inner as parameter type
to template class S
430

C++ errors and warnings
nested class name within nested class name within template class name

Classes may only be nested directly within template classes, classes within nested
classes within template classes are not implemented:

template <class T> class S {
class nest1 {

class nest2 {/*...*/};
};

};

"file", line 3: not implemented: nested class S::nest1::nest2 within nested
class S::nest1 within template class S

nested depth class beyond 9 unsupported

Classes are nested more than nine levels deep.

struct S1 {
struct S2 {
struct S3 {
struct S4 {
struct S5 {
struct S6 {
struct S7 {
struct S8 {
struct S9 {
struct S10 { enum { e }; };

};};};};};};};};};

"file", line 20: not implemented: nested depth class beyond 9 unsupported

non-trivial declaration in switch statement

A ‘non-trivial’ declaration appears within a switch statement. Such a declaration
might declare an object of reference type, a static object, a const object, an object
of a class type with constructor or destructor, an object with an initialiser list, or an
object initialised with a string literal.

void f(int i) {
switch (i) {
default:

int& j = i;
}

}

"file", line 2: not implemented: non-trivial declaration in switch statement
(try enclosing it in a block)

Note that since it is illegal to jump past a declaration with an explicit or implicit
initialiser unless the declaration is in an inner block that is not entered, most
declarations in switch statements and not contained in inner blocks will be
errors.
431

‘Not implemented’ messages
out-of-line definition of member function of class nested within template class

The member functions of a class nested within a template function must be
defined within the definition of the nested class.

template <class t> struct x {
struct y { void foo(); };
// ...

};

template <class t>
void x<t>::y::foo(){}

"file", line 7: not implemented: out-of-line definition of member function of
class nested within template class (x::y:: foo())

overly complex op of op

This message should not be produced.

parameter expression of type float, double or long double

A template taking a non-type argument is declared taking a float, double or long
double argument:

template <double d> struct S { /*...*/};

"file", line 1: not implemented: parameter expression of type float, double,
or long double

postfix template function operator ++(): please make a class member function

The postfix implementation of a template increment or decrement operator must
be a member function.

template <class t> struct x {
int operator++(int); // ok

};

template <class t>
int operator++(x<t>&,int); // sorry

x<int> xi;

"file", "", line 6: not implemented: postfix template function operator ++():
please make a class member function

pointer to member function type too complicated

This message should not be produced.
432

C++ errors and warnings
public specification of overloaded function

The base class member in an access declaration refers to an overloaded function. A
similar message is issued for private and protected access declarations.

struct B { int f(); int f(int); };
class D : private B {
public:

B::f;
};

"file", line 2: not implemented: public specification of overloaded B::f()

reuse of formal template parameter name

A template formal parameter name is reused within the template declaration:

template <class T> struct S {
int T;

};

"file", line 2: not implemented: reuse of formal template parameter T

specialized template name not at global scope

A specialised template is declared at other than global scope:

template <class T> struct S {
T var;

};

void f() {
struct S <int > {

int var;
};

};

"file", line 6: not implemented: specialized template S not at global scope

static member anonymous union

A static class member is declared as an anonymous union.

class C {
static union {

int i;
double d;

};
};

"file, line 5: not implemented: static member anonymous union

struct name member name

This message should not be produced.
433

‘Not implemented’ messages
template function actuals too complicated (please simplify)

#include <iostream.h>

template <class i> struct x { x(); };

template <class t>
ostream& operator<<(ostream &os, x<t>&) { return os; }

x<int> z;

main() {
/*
* ok: simplified invocation of actual template function:
* cout << "hello"; cout << z << endl;
*/

// generates sorry message: actuals too complicated
cout << "hello" << z << endl;
}

"file", line 17: not implemented: template function operator <<(): actuals too
complicated (please simplify)

template function instantiated with local class name

template <class T> int f(T);

f2() {
struct local {/*...*/};
local lvar;
f(lvar);

}

"file", line 6: not implemented: template function f() instantiated with local
class local

temporary of class name with destructor needed in expr expression

An expression containing a ?:, ||, or && operator requires a temporary object of a
class that has a destructor.

struct S { S(int); ∼S(); };
S f(int i) {

return i ? S(1) : S(2) ;
}

"file", line 3: not implemented: temporary of class S with destructor needed
in ?: expression
434

C++ errors and warnings
too few initializers for name

The initialiser list for an array of class objects has fewer initialisers than the
number of elements in the array.

struct S { S(int); S(); };
S a[2] = {1};

"file", line 2: not implemented: too few initializers for ::a

type1 assigned to type2 (too complicated)

A pointer is initialised or assigned with an expression whose type is too
complicated.

struct S1 {};
struct S2 { int i; };
struct S3 : S1, S2 {};
int S3::*pmi = &S2::i;

"file", line 4: not implemented: int S2::* assigned to int S3::* (too
complicated)

use of member with formal template parameter

An attempt to use a member of a formal parameter type, such as T::type, is not
currently supported. For example,

template <class T> class U {
typedef T TU;
// ...

};

template <class Type> class V {
Type::TU t;
// ...

};

"file", line 9: not implemented: use of Type::TU with formal template type
parameter
"file", line 9: cannot recover from earlier errors

visibility declaration for conversion operator

An access declaration is specified for a conversion operator.

struct B { operator int(); };
class D : private B {
public:

B::operator int;
};

"file", line 1: not implemented: visibility declaration for conversion
operator
435

volatile functions

A member function is specified as volatile.

struct S {
int f() volatile;

};

"file", line 2: not implemented: volatile functions

wide character constant
wide character string

A wide character constant or a wide character string is used.

int wc = L’ab’;
char *ws = L"abcd";

"file", line 1: not implemented: wide character constant
"file", line 2: not implemented: wide character string
436

C function index

Main entries are printed in bold type.
Symbols
__heap_checking_on_all_allocates 210
__heap_checking_on_all_deallocates 210
__rt_stkovf_split_big 345
__rt_stkovf_split_small 345
_fmapstore 30, 210
_kernel_stkovf_split_0frame 345
_kernel_stkovf_split_frame 345
_kernel_swi 338
_mapstore 30, 33, 210

A
abort 93, 95, 184
abs 187
acos 93, 148
acosh 148
aligned_alloc 95, 184
asctime 202
asin 93, 148
asinh 148
assert 93, 136
at_quick_exit 185
atan 148
atan2 93, 148
atanh 148
atexit 184
atof 180
atoi 180
atol 180

B
bsearch 186

C
calloc 95, 183
cbrt 149
ceil 149
clearerr 178
clock 96, 201
copysign 149
cos 148
cosh 148
ctime 203

D
difftime 202
div 188

E
erf 149
erfc 149
event_deregister_message_handler 212, 216
event_deregister_toolbox_handler 212, 216
event_deregister_wimp_handler 212, 216
event_finalise 212, 213
event_get_mask 213
event_initialise 211, 213, 217
event_poll 211, 212, 214, 217
event_poll_idle 211, 214
event_register_message_handler 212, 216
437

event_register_toolbox_handler 211, 215
event_register_wimp_handler 211, 215
event_set_mask 211, 213, 214
exit 95, 184
exp 148
exp2 148
expm1 148

F
fabs 149
fclose 163
feof 178
ferror 179
fflush 163
fgetc 171
fgetpos 95, 175
fgetpos64 129, 176
fgets 172
floor 149
fma 149
fmax 149
fmin 149
fmod 93, 149
fopen 163
fopen64 129, 164
fprintf 94, 166
fputc 172
fputs 172
fread 175
free 183
freopen 165
freopen64 129, 165
frexp 148
fscanf 94, 168
fseek 176
fseeko 128, 176
fseeko64 129, 176
fsetpos 177
fsetpos64 129, 177
ftell 95, 177
ftello 128, 178

ftello64 129, 178
fwrite 175

G
getc 173
getchar 173
getenv 95, 186
gets 173
gmtime 203

H
hypot 149

I
isalnum 93, 138
isalpha 93, 138
isblank 93, 138
iscntrl 93, 138
isdigit 138
isgraph 138
islower 93, 138
isprint 93, 138
ispunct 93, 138
isspace 138
isupper 93, 138
isxdigit 138

L
labs 187
lconv 146
ldexp 148
ldiv 188
lgamma 149
llabs 187
lldiv 188
localtime 203
438

log 93, 148
log10 93, 148
log1p 148
log2 148
logb 149
longjmp 34, 151

M
main 87, 331, 336
malloc 95, 183, 336
mblen 189
mbstowcs 190
mbtowc 189
memchr 195
memcmp 193
memcpy 192
memmove 192
memset 197
mktime 202
modf 149

N
nan 149
nearbyint 149
nextafter 149
nexttoward 149

O
order 150

P
perror 95, 179
pow 149
printf 101, 121, 167
putc 173
putchar 174

puts 174

Q
qsort 187
quick_exit 95, 185

R
raise 153
rand 182
realloc 95, 183
remainder 149
remove 94, 161
rename 94, 162
rewind 178
rint 149
round 149

S
scalbln 149
scalbn 149
scanf 101, 121, 169
setbuf 165
setjmp 151
setlocale 93, 146
setvbuf 166
signal 93, 94, 335
sin 148
sinh 148
snprintf 101, 103, 168
sprintf 168, 336
sqrt 93, 149
srand 183
sscanf 169
strcat 193
strchr 195, 336
strcmp 194
strcoll 194
439

strcpy 192
strcspn 195
strerror 95, 197
strftime 101, 203
strlen 197
strncat 193
strncmp 194
strncpy 193
strpbrk 195
strrchr 196, 336
strspn 196
strstr 196
strtod 180
strtok 196
strtol 181
strtoll 181
strtoul 182
strtoull 182
struct tm 201
strxfrm 194
system 95, 186

T
tan 148
tanh 148
tgamma 149
time 202
timespec_get 96, 205
tmpfile 162
tmpfile64 129, 162
tmpnam 162
tolower 138
toolbox_initialise 211, 213
toupper 138
trunc 149

U
ungetc 174

V
va_arg 155
va_copy 156
va_end 156
va_list 155
va_start 155
vfprintf 170
vfscanf 102, 171
vprintf 169
vscanf 102, 103, 171
vsnprintf 101, 170
vsprintf 170
vsscanf 102, 171

W
wcstombs 190
wctomb 190
wimp_add_messages 222
wimp_base_of_sprites 222
wimp_block_copy 222
wimp_close_down 222
wimp_close_template 222
wimp_close_window 223
wimp_command_window 223
wimp_create_icon 223
wimp_create_menu 223
wimp_create_submenu 223
wimp_create_window 223
wimp_decode_menu 224
wimp_delete_icon 224
wimp_delete_window 224
wimp_drag_box 224
wimp_force_redraw 224
wimp_get_caret_position 225
wimp_get_icon_state 225
wimp_get_menu_state 225
wimp_get_pointer_info 225
wimp_get_rectangle 225
wimp_get_window_info 225
wimp_get_window_outline 226
440

wimp_get_window_state 226
wimp_initialise 226
wimp_load_template 226
wimp_open_template 226
wimp_open_window 226
wimp_plot_icon 226
wimp_poll 227
wimp_poll_idle 227
wimp_process_key 227
wimp_read_palette 227
wimp_read_sys_info 227
wimp_redraw_window 228
wimp_remove_messages 228
wimp_report_error 228
wimp_resize_icon 228
wimp_send_message 229
wimp_set_caret_position 229
wimp_set_colour 229
wimp_set_colour_mapping 229
wimp_set_extent 229
wimp_set_font_colours 230
wimp_set_icon_state 230
wimp_set_mode 230
wimp_set_palette 230
wimp_set_pointer_shape 230
wimp_slot_size 231
wimp_sprite_op 231
wimp_start_task 231
wimp_text_colour 231
wimp_text_op 231
wimp_transfer_block 231
wimp_update_window 232
wimp_which_icon 232

X
x$stack_overflow 345
x$stack_overflow1 345
441

442

C++ class index

Main entries are printed in bold type.
C
c_exception

complex_error 313
cerr 250
cin 250
clog 250
complex 310

– 318
* 319
*= 319
/ 319
/= 319
+ 318
+= 319
–= 319
!= 319
== 319
abs 311
arg 311
conj 311
cos 321
cosh 321
exp 316
imag 312
log 316
norm 311
polar 312
pow 316
real 312
sin 321
sinh 321
sqrt 316

cout 250

F
filebuf 251, 253

attach 255
close 255
fd 255
filebuf 254
is_open 255
open 255
seekoff 255
seekpos 256
setbuf 256
sync 256

fstream 251, 257
attach 259
close 259
fstream 258
open 259
rdbuf 260
setbuf 260

I
IAPP 279
ifstream 251, 257

attach 259
close 259
ifstream 258
open 259
rdbuf 260
setbuf 260

IMANIP 279
IOAPP 279
IOMANIP 279
ios 249, 261

! 264
443

* 264
<< 270
>> 270
bad 264
bitalloc 268
clear 263
dec 265
eof 264
fail 264
fill 267
fixed 266
flags 267
good 264
hex 265
init 263
internal 265
ios 263
iword 269
left 265
oct 265
precision 267
pword 269
rdbuf 269
rdstate 263
right 265
scientific 266
setf 267
showbase 265
showpoint 266
showpos 265
skipws 265
stdio 266
sync_with_stdio 269
tie 269
unitbuf 266
unsetf 268
uppercase 266
width 268
xalloc 268

iostream 249
Iostream_init 250
iostream_withassign 250
istream 249, 272

>> 274, 278
gcount 277
get 276
getline 276
ignore 277
ipfx 274
istream 274
istream_withassign 274
manip 277
peek 277
putback 277
read 277
seekg 278
sync 277
tellg 278

istream_withassign 250
istrstream 252, 303

istrstream 304
rdbuf 304

M
main 241
matherr 314

O
OAPP 279
ofstream 251, 257

attach 259
close 259
ofstream 258
open 259
rdbuf 260
setbuf 260

OMANIP 279
ostream 249, 283

<< 286
dec 288
endl 288
ends 288
444

flush 287, 288
hex 288
manip 287
oct 288
opfx 285
osfx 285
ostream 285
ostream_withassign 285
put 287
seekp 288
tellp 288
write 287

ostream_withassign 250
ostrstream 252, 303

ostrstream 304
pcount 305
rdbuf 305
str 305

S
SAPP 279
SMANIP 279
stdiobuf 251, 289
stdiostream 252
streambuf 249, 290, 298

allocate 294
base 292
blen 294
dbp 294
doallocate 295, 296
eback 292
ebuf 292
egptr 292
epptr 292
gbump 294
gptr 293
in_avail 300
out_waiting 300
overflow 295, 296
pbackfail 295, 296
pbase 293

pbump 294
pptr 293
sbumpc 300
seekoff 295, 297, 300
seekpos 295, 296, 300
setb 293
setbuf 296, 297, 301
setg 293
setp 293
sgetc 301
sgetn 301
snextc 301
sputbackc 301
sputc 301
sputn 301
stossc 302
streambuf 292
sync 296, 297, 302
unbuffered 294
underflow 296, 297

strstream 303
rdbuf 305
str 305
strstream 304

strstreambuf 251, 306
freeze 308
setbuf 308
str 308
strstreambuf 307
445

446

Index

// 98
Symbols
_ _func_ _ 100
_ _STDC_ _ 107, 116
_ _STDC_HOSTED_ _ 107, 116
_ _STDC_VERSION_ _ 107, 117
_ _VA_ARGS_ _ 102
__alignas_is_defined 154
__alignof_is_defined 154
__APCS_32 126
__APCS_FPREGARGS 127
__APCS_INTERWORK 127
__APCS_NOFP 127
__APCS_NOSWST 127
__APCS_REENT 127
__arm 126
__asm statement 129
__bool_true_false_are_defined 157
__CC_NORCROFT 126
__CC_NORCROFT_VERSION 126
__global_freg(n) 125
__global_reg(n) 125
__pure 125
__riscos 126
__value_in_regs 125
_Bool 111, 157
_FILE_OFFSET_BITS 129
_IN 338
_kernel_swi_regs 338
_LARGEFILE_SOURCE 129
_LARGEFILE64_SOURCE 129
_OUT 338
_Pragma 110
_swi 338
_swix 338, 339
:mem 20, 21
:tt 87

#include 17, 18–22, 23, 58, 61

Numerics
64-bit integers 97

A
absolute machine addresses 330
alignment 114, 327
an 342, 343
anonymous structures and unions 122
ANSI library 14, 30, 209–210
ANSI standard 7
APCS 45, 341

APCS-32 97
APCS-R 97

arguments 246
passing to assembler 343–344

arithmetic
IEC 60559 110
IEEE 110

arithmetic operations 84–85
arrays 90, 306–308, 331

flexible members 99
variable-length 98, 111

asm declarations 244
assembly language 341–346

inline 129
assembly output 34
assert.h 116, 136
447

B
bibliography 6–7
bitfields 91, 245
BL 343
bool datatype 97, 157
BS ISO/IEC 9899:1999 7
BS ISO/IEC 9899:2018 7
buffers 249, 251

characters 298–302
file I/O 253–256

buttons see application (button name)
byte ordering 326

C
C Module Header Generator see CMHG
C++ 2, 11–56

Assembler 18, 31
Auto run 43
Auto save 43
Cancel 13
command line 41, 44–51
Command line (menu option) 13, 25
Compile only 17, 18, 23
Debug 24
Default path 17, 20–22, 26
Define 27
Features 21, 32–34
icon bar menu 43
Include 17, 19–21, 23
Module code 31
Options 43
Others 41
Run 13, 22, 25
Save options 43
SetUp dialogue box 12–13, 22–24
SetUp menu 13, 25–41
Source 12, 22–23
Suppress warnings 33, 34
Throwback 24
Undefine 28

Work directory 15, 40
C++ library 14, 247–322
C++Hello example 53

see also HelloW example
C$Libroot 20, 22
C$Path 19, 23
C18 2, 7, 112

non-compliances 118
C90 2, 7, 39, 45
C99 2, 7, 39, 45, 97, 110, 111

non-compliances 110
restrictions 110

callbacks 337
cartesian coordinates 311–312
case sensitivity 44
CC 2, 11–56, 351

Assembler 18, 31, 345
Auto run 43
Auto save 43
Cancel 13
command line 41, 44–51
Command line (menu option) 13, 25
Compile only 17, 18, 23
Debug 24
Debug options 29
Default path 17, 20–22, 26
Define 27
Errors to file 38
Features 21, 30, 32–34, 40
icon bar menu 43
Include 17, 19–21, 23
ISO C90 39
ISO C99 39
Keep comments 26
Libraries 31
Listing 18, 33, 40
Module code 31
Options 43
Others 30, 41
Preprocess only 24, 42, 334
Profile 30
Run 13, 22, 25
Save options 43
448

SetUp dialogue box 12–13, 22–24
SetUp menu 13, 25–41
Source 12, 22–23
Suppress errors 37
Suppress warnings 33, 34–37
Throwback 24
Undefine 28
UNIX pcc 39
Work directory 15, 40

CFront 2, 11, 12, 49
characters 88–89

testing and mapping 138
chars 78
CHello example 53

see also HelloW example
classes

members 245
multiple base 245

CMHG 57–60, 351–372
AOF 58
C Header 58
command line 60
Command line (menu option) 59
command line options 61
date in module version string 360
Define (menu option) 59
description files 59, 355
icon bar menu 59
Include 58
include files 61
module version string 360
Others (menu option) 59
pre-defining macros from the command

line 61
Preprocess 58
SetUp dialogue box 58
SetUp menu 59
Source 58
Throwback 58
using the C preprocessor 355

CModule example 54
comments 98, 329
common subexpression elimination 123

compatibility issues 111, 118
compiler see CC and C++
Complex Math library 309–322

operators 318–320
complex numbers 110, 310
complex.h 116, 137
compound literals 102
const qualifier 329
constants

character 114, 240
floating 240
hexadecimal 326
octal 329

control statements 331
conventions 6
conversion specifiers 97, 103
conversions 242, 243, 249, 330
cpp 334
cross-jumping 122
ctype.h 138, 334
current place 20–21

D
data elements 78–81

limits 79–81, 145
date in module version string 360
debugging

machine level 24
source level 24
tables 24, 29

declarations 331
in for statements 98

device drivers 351
Dhrystone 2.1 example 54
diagnostics 136
dialogue boxes see application (dialogue box name)
digraphs 109
doubles 78, 85
DrawFile module 235
449

E
enum 100
enumeration types 92
errno.h 139–140, 335
errors 24, 37, 38, 42, 87, 263–264, 385–436

browser 24
Complex Math library 313–315
domain 139
EDOM 139, 314, 317
EFBIG 140
EILSEQ 139
EOVERFLOW 139
ERANGE 139, 314
ESIGNUM 139
file too big 140
illegal sequence 139
overflow 139
range 139

event handlers 211–212
Event library 14, 211–219
examples 53–56
exception handling 246
exponential functions 316–317
expressions 242

evaluation 85

F
false 97, 157
fenv.h 103, 141
FILE 161
filenames 14–18

case-sensitivity 337
extensions 16, 337
length 337
rooted 16, 20

files
buffering 94
closing 163
creating 255, 259
deleting 161

flushing 163
formatted I/O 251
large 128
naming 162
opening 163–165, 255, 258, 259
position indicators 175–179
reading 253
renaming 162
seeking 255, 259
syncing 256
temporary 162
writing 253
zero-length 94

flags 44–51
flexible array members 99
float.h 103, 116, 142, 336
floating point 90, 103, 142

environment 141
hexadecimal format 101, 103

floats 78, 85, 330
fn 342, 344
for

declarations in 98
fp 343, 344
fpos_t 161
fpos64_t 129, 161
functions

arguments 328
array parameter 100
calls 242
declaration keywords 125
declarations 331
definitions 331
name of 100
non returning 113
prototypes 331
untyped 110
workspace 345

G
get area 292
450

H
halfword instructions 348
header files 11, 15, 19, 103

from CMHG 58
standard 19

heap checking 210
HelloW example 12–13, 17
HUGE and HUGE_VAL 335
Hyper example 56
hyperbolic functions 321–322

I
I/O

buffering 165–166
redirection 88

I/O functions 161–179
icons see application (icon name)
Idempotent type qualifiers 110
identifiers 78, 88, 240
IEEE double precision 343
IEEE single precision 343
implementation limits 85
include files 17, 23, 26, 58, 61, 121

nesting 20–21
searching for 18–22

inline assembler 129
inline functions 91
inline SWI functions 34, 339
input functions 168–169, 171–172, 173, 174–175
installation 1
integers 90
interactive devices 87
intmax_t 101
Intrinsic functions 127

__breakpoint 127
__current_pc 127
__current_sp 128
__nop 128
__return_address 128
__schedule_barrier 128

__semihost 128
ints 78
inttypes.h 103, 143
ip 342
ISO 8601 101
ISO 8859-1 88
ISO standard 11, 87–96

vs K&R 328–332
ISO/IEC 9899:1990 2
ISO/IEC 9899:1999 2, 7, 107
ISO/IEC 9899:2018 2, 7
iso646.h 103, 144

K
kernel.h 19, 338
Kernighan and Ritchie 6

L
large file support 128
Latin-1 character set 88
LDM 51
libraries 4, 14, 19, 23, 31, 135–235, 247–322

ISO vs BSD UNIX 334–336
limits.h 145, 336
Link 11, 12, 23

Debug 24
link register 33, 34, 339
linkage specifications 244
listings 18, 31, 33, 40, 345
locale.h 146–147, 336
logarithmic functions 316–317
long doubles 78, 85, 329, 330
long floats 329
long ints 85
long longs 78, 97, 111
longs 78, 329
lr 128, 342, 343
451

M
macros 102, 110, 246

pre-defined 107, 116, 126
Make 15, 16, 48, 57, 65, 70
manipulators 279–282
math.h 103, 148–150, 335
mathematical functions 93, 148–150, 187–189
memory allocation functions 183–184
menus see application (menu name)
message handlers 212
MinApp example 56
modules 31, 57, 351–372

application code 353, 356
components 353–354
constraints 352
date string 353, 360
event handler 354, 368–369
finalisation code 353, 357–358
generic veneers 354, 370–371
header 57
help and command keyword table 353, 361–

363
help string 353, 359–360
initialisation code 353, 357
international help file 354, 363
library enter code 354, 371
library finalisation code 354, 371
library initialisation code 354, 371
non-reentrant 371
service call handler 353, 358–359
SWI chunk base number 354, 363–364
SWI decoding code 354, 365–366
SWI decoding table 354, 365
SWI handler code 354, 364
title string 353, 359
turning interrupts on and off 372
vector handlers 354, 366–367
version number 360

multibyte character functions 189–190
multibyte string functions 190–191
multi-tasking 337
multi-threading 337

O
object files 11, 15, 17, 23, 43, 58, 60
off_t 128, 161
off64_t 129, 161
offsetof 158
op-codes 34
operating system interface 186, 328, 336–337
operators

alternative spellings 144
multiplicative 243
relational 243
shifts 243

optimisation 122–123
output 42–43, 60, 66, 73
output functions 166–168, 170, 172, 173–174,

175
overlays 373–375

alternatives to 374

P
paging 373
pathname separator 337
pc 128, 343
pcc 32, 39, 45, 63–74, 122, 332–334
pointers 78, 84, 90, 327, 330

restricted 103
subtraction 84

polar coordinates 311–312
portability 325–339
portable C compiler see pcc
power functions 316–317
pragmas 51, 72, 119–124

header file 19
preprocessor 11, 12, 18, 24, 26–28, 33, 49, 121,

331, 334
directives 92
translation ordering 332
using with CMHG 355
see also CC and C++

profiling 30, 210
452

program termination functions 184–185
ptrdiff_t 158
put area 292

R
RAM filing system 374
random numbers 182–183
register storage class 91
register variables 124, 125
registers

names 342
usage 342–343

Render library 235
reserve area 292
resource files 16
restrict 103
Risc PC 348
rooted filenames see filenames (rooted)

S
scheduler 24, 123, 128
search functions 186
setjmp.h 151
SetPaths 23
shared C library 14, 30, 87, 92–96, 135–208, 348,

383
modules 351

SharedCLibrary 97, 112, 348, 352
shorts 78
Sieve example 54
signal.h 152–153, 335
signals 139, 152–153
signed qualifier 329
size_t 101, 158
sl 343, 344, 345
SMULL 111
Software Interrupt see SWI
sort functions 187
source files 11, 15, 16

sp 128, 343, 344, 345
specifiers

storage class 244
type 244

square root functions 316–317
SrcEdit 24
stack checking 45, 123
stack extension 345
stdalign.h 116, 154
stdarg.h 155–156
stdbool.h 97, 103, 157
stddef.h 158
stderr 88
stdin 88
stdint.h 103, 159–160
stdio.h 103, 116, 161–179, 336
stdlib.h 116, 180–191, 336
stdnoreturn.h 116, 199
stdout 88
STM 51
streams 250–251, 261–271

formatting 264–269, 274–276, 286–287
Streams library 247–308
string functions

appending 193
comparison 193–194
conversion 180–182
copying 192–193
error message mapping 197
length 195, 196, 197
locating 195–196
time 203–208
tokenising 196–197
transformation 194–195

string literals 34, 241, 329, 331
string.h 192–198, 336
StrongARM 111, 348
structures 81–83, 91, 125, 327, 329

anonymous 122
initialising 100
results 344

stubs 14, 30, 135, 351, 352
entry vectors 135
453

summary 42
SVC mode 34, 339
SWI 338, 351
SWI functions 338–339

in-line 339
kernel.h 338
swis.h 338

SWI numbers 338
swis.h 19, 338
switch statement 331

T
TBoxCalc example 56
text streams 94
tgmath.h 110, 200
throwback 24, 48
time.h 116, 201–208
ToANSI 63–67, 332

command line 67
Command line (menu option) 65
File 65
icon bar menu 66
SetUp dialogue box 65
SetUp menu 65

token-pasting 331
Toolbox 211, 221
Toolbox library 14, 233
tools 9–74

common features 43, 57, 63, 69
ToPCC 69–74, 332

command line 74
Command line (menu option) 71
File 71
icon bar menu 72
Options 72
SetUp dialogue box 71
SetUp menu 71–72

translation limits 239
trigonometric functions 321–322
true 97, 157
types 241

checking 333
generic 115

typographic conventions see conventions

U
uchar.h 206
UMULL 111
unions 91, 329

anonymous 122
Universal character names 109
UNIX 16, 17, 21, 336, 337
unsigned long ints 330
unsigned qualifier 85, 329

V
varargs.h 19
variable-length arrays 98, 111
variables

declaration keywords 125
storing 345

variadic functions 329
variadic macros 102
verbose mode 32
vn 343, 344
void 329
void * 329
volatile qualifier 92, 122, 329

W
warnings 34–37, 87, 385–436
wchar_t 158
wchar.h 207
wctype.h 208
week number 101
Wimp library 14, 221–232
Windows 16, 17
work directory 15, 40, 48
454

✃

Reader’s Comment Form
Acorn C/C++, Issue 6

We would greatly appreciate your comments about this Manual, which will be taken into account for the
next issue:

How would you classify your experience with computers?

Did you find the information you wanted?

Do you like the way the information is presented?

General comments:

If there is not enough room for your comments, please continue overleaf

Used computers before Experienced ProgrammerExperienced User Programmer

Please send an e-mail with your
This information will only be used to get in touch with you in case we wish to explore your
comments further

Your name and address:

comments to:
manuals@riscosopen.org

	Contents
	Installation of Acorn C/C++
	The C compiler
	The C++ translator
	This user guide
	Part 1 – Using the tools
	Part 2 – C language issues
	Part 3 – C++ language issues
	Part 4 – Developing software for RISC OS
	Part 5 – Appendices
	Conventions used

	Useful references
	C programming
	C++ programming
	RISC OS
	The C standards
	The ANSI C++ standard

	Part 1 – Using the tools
	1 CC and C++
	The underlying programs
	How the tools use them

	Getting started with CC and C++
	Libraries
	C libraries
	C++ libraries

	File naming and placing conventions
	Work directory
	Filename conventions

	Include file searching
	Reference section

	The SetUp dialogue box
	Source
	Include
	Compile only
	Preprocess only
	Debug
	Throwback

	The SetUp menu
	The command line
	Controlling the preprocessor
	Controlling code generation
	Controlling the linker
	Using the Features menu option
	Handling warnings and errors
	Selecting the C dialect
	Listings
	Choosing your work directory
	Specifying other command line options

	Output messages
	The icon bar menu
	Command lines
	Keyword options
	Preprocessor options
	Translator options
	Code generation options
	Linker options
	Warning and error message options
	Additional feature options
	Global data options

	Worked examples
	CHello
	C++Hello
	Sieve
	Dhrystone 2.1
	CModule
	Desktop application examples

	2 CMHG
	A note about Make
	Starting CMHG
	The icon bar menu
	Example output
	Command line interface
	Command line options

	3 ToANSI
	ToANSI C translation
	A note about Make

	Starting ToANSI
	The icon bar menu
	Example output
	Command line interface

	4 ToPCC
	ToPCC C translation
	A note about Make

	Starting ToPCC
	The icon bar menu
	Example output
	Command line interface

	Part 2 – C language issues
	5 C implementation details
	Implementation details
	Identifiers
	Data elements
	Structured data types
	Packed Structures

	Pointers
	Pointer subtraction

	Arithmetic operations
	Expression evaluation
	Implementation limits

	Standard implementation definition
	Translation (J.3.1)
	Environment (J.3.2)
	Identifiers (J.3.3)
	Characters (J.3.4)
	Integers (J.3.5)
	Floating point (J.3.6)
	Arrays and pointers (J.3.7)
	Hints (J.3.8)
	The register storage-class specifier
	The inline function specifier

	Structures, unions, enumerations and bitfields (J.3.9)
	Qualifiers (J.3.10)
	Preprocessing directives (J.3.11)
	Library functions (J.3.12)
	Architecture (J.3.13)

	C99 features
	C99 features implemented in the compiler
	Boolean data type
	64-bit integers
	C++ style comments
	Interleaved statements and declarations
	Declarations in for statements
	Variable-length arrays
	Flexible array members
	Designated initialisers
	Type qualifiers and ‘static’ inside function array parameters
	Non-constant structure initialisers
	Name of current function
	Trailing comma allowed in enum declaration
	New modifiers for printf, scanf and strftime
	snprintf and vsnprintf
	vscanf, vfscanf and vsscanf
	Macros with a variable number of arguments
	Inline functions
	Compound literals
	New and updated header files
	Hexadecimal floating-point formats
	Restricted pointers
	Pre-defined macros
	Standard pragmas
	Digraphs
	Universal character names

	C99 restrictions implemented in the compiler
	Implicit int type no longer assumed
	Return

	Other C99 features
	C99 non-compliances
	Implementation notes
	Compatibility issues

	C18 features
	C18 features implemented in the compiler
	Static assertions
	Non returning functions
	Complex type initialisation
	Floating point limits
	Alternate string literal encodings
	Variable alignment
	Generic type selectors
	Anonymous structures and unions
	Exclusive access mode for fopen
	New and updated header files
	Duplicate type definitions
	Pre-defined macros
	Quick exits
	Sub-second resolution time
	Withdrawal of gets

	C18 non-compliances
	Compatibility issues

	Extra features
	#warning directive
	#pragma directives
	Pragmas controlling the source character set
	Pragmas controlling the preprocessor
	Pragmas controlling printf/scanf/_swi/_swix argument checking
	Pragmas controlling anonymous structures and unions
	Pragmas controlling optimisation
	Pragmas controlling code generation

	Special function declaration keywords
	__value_in_regs
	__pure

	Special variable declaration keywords
	__global_reg(n)
	__global_freg(n)

	Pre-defined macros
	__CC_NORCROFT
	__CC_NORCROFT_VERSION
	__riscos
	__arm
	__APCS_32
	__APCS_FPREGARGS
	__APCS_INTERWORK
	__APCS_NOFP
	__APCS_NOSWST
	__APCS_REENT

	Intrinsic functions
	Large file support
	Inline assembler

	6 The C library
	Compatibility Issues
	assert.h
	complex.h
	ctype.h
	errno.h
	fenv.h
	float.h
	inttypes.h
	iso646.h
	limits.h
	locale.h
	math.h
	setjmp.h
	signal.h
	stdalign.h
	stdarg.h
	stdbool.h
	stddef.h
	stdint.h
	stdio.h
	stdlib.h
	string.h
	stdnoreturn.h
	tgmath.h
	time.h
	uchar.h
	wchar.h
	wctype.h

	7 The ANSI library
	Extra functions

	8 The Event library
	Introduction
	Registering and deregistering event handlers
	Registering and deregistering message handlers
	Quitting applications
	Programmer interface
	Initialisation
	Polling
	Registering handlers
	Handlers
	Example

	9 The Wimp library
	Programmer interface

	10 The Toolbox library
	11 The Render library

	Part 3 – C++ language issues
	12 C++ implementation details
	Translation Limits
	Identifiers (2.3)
	Identifiers reserved by Release 3.0

	Character Constants (2.5.2)
	Value of multicharacter constants
	Value of (single) character constants
	Wide character constants

	Floating Constants (2.5.3)
	Long double floating constants

	String Literals (2.5.4)
	Distinct string literals
	Wide character strings

	Start and Termination (3.4)
	Type of main()
	Linkage of main()

	Fundamental Types (3.6.1)
	Signed integral types
	Long double type
	Alignment requirements

	Integral Conversions (4.2)
	Conversion to a signed type

	Expressions (5)
	Overflow and divide check

	Function Call (5.2.2)
	Evaluation order

	Explicit Type Conversion (5.4)
	Explicit conversions between pointer and integral types

	Multiplicative Operators (5.6)
	Sign of the remainder

	Shift Operators (5.8)
	Result of right shift

	Relational Operators (5.9)
	Pointer comparisons

	Storage Class Specifiers (7.1.1)
	Inline functions

	Type Specifiers (7.1.6)
	Volatile
	Signed

	Asm Declarations (7.3)
	Effect of an asm declaration

	Linkage Specifications (7.4)
	Languages supported
	Linkage to functions
	Linkage to non-functions

	Class Members (9.2)
	Allocation of non-static data members

	Bitfields (9.6)
	Allocation and alignment of bitfields
	Sign of ‘plain’ bitfields

	Multiple Base Classes (10.1)
	Allocation of base classes

	Argument Matching (13.2)
	Integral arguments

	Exception Handling (experimental) (15)
	Predefined Names (16.10)
	Predefined macros

	13 The Streams library
	Introduction
	Core Classes
	Predefined streams
	Classes derived from streambuf
	Classes derived from istream, ostream, and iostream

	filebuf
	Constructors
	Members

	fstream
	Constructors
	Member functions

	ios
	Constructors and assignment
	Error states
	Operators
	Formatting
	User-defined Format Flags
	Other members
	Built-in Manipulators

	istream
	Constructors and assignment
	Input prefix function
	Formatted input functions (extractors)
	Unformatted input functions
	Other members
	Member functions related to positioning
	Manipulator

	manipulators
	ostream
	Constructors and assignment
	Output prefix function
	Output suffix function
	Formatted output functions (inserters)
	Unformatted output functions
	Other member functions
	Positioning functions
	Manipulators

	stdiobuf
	streambuf – protected
	Constructors
	The Get, Put, and Reserver area
	Functions to examine the pointers
	Functions for setting the pointers
	Other non-virtual members
	Virtual member functions

	streambuf – public
	strstream
	Constructors
	istrstream members
	ostrstream members
	strstream members

	strstreambuf
	Constructors
	Member functions

	14 The Complex Math library
	Introduction
	cartesian/polar
	complex_error
	exp, log, pow, sqrt
	complex operators
	Arithmetic operators:
	Comparison operators
	Assignment operators

	cplxtrig

	Part 4 – Developing software for RISC OS
	15 Portability
	General portability considerations
	Fundamental data types
	Byte ordering
	Store alignment
	Pointers and pointer arithmetic
	Function argument evaluation
	System-specific code

	ISO C vs K&R C
	Lexical elements
	Conversions
	Expressions
	Declarations
	Statements
	Preprocessor

	The ToPCC and ToANSI tools
	pcc compatibility mode
	Language and preprocessor compatibility
	Standard headers and libraries
	ctype.h
	errno.h
	math.h
	signal.h
	stdio.h
	string.h
	stdlib.h
	float.h
	limits.h
	locale.h

	Environmental aspects
	Software Interrupts (SWIs)
	SWI Functions in kernel.h
	SWI Functions in swis.h
	In-line SWI Functions

	16 Assembly language interface
	Register names
	Register usage
	Control arrival
	Passing arguments
	Return link
	Structure results
	Storage of variables
	Function workspace
	Examples

	17 RISC OS Compatibility
	32-bit compatibility
	The shared C library
	Ensuring the necessary components are present

	18 How to write relocatable modules in C
	Getting started
	Constraints on modules written in C
	Overview of modules written in C
	Functional components of modules written in C
	The C module header generator
	The format of input to CMHG
	Using the preprocessor
	Runnable application code
	Initialisation code
	Finalisation code
	Service call handler
	Title string
	Help string
	Date string
	Help and command keyword table
	International help file
	SWI chunk base number
	SWI handler code
	SWI decoding table
	SWI decoding code
	Vector handlers
	Event handler
	Generic veneers
	Library initialisation code
	Library enter code
	Library finalisation code
	Non-reentrant modules
	Turning interrupts on and off

	19 Overlays
	Paging vs overlays
	When to use overlays

	Part 5 – Appendices
	Appendix A: Changes to the C compiler
	Changes up to version 5.54
	Changes up to version 5.56
	Changes up to version 5.59
	Changes up to version 5.64
	Changes up to version 5.69
	Changes up to version 5.71
	Changes up to version 5.74
	Changes up to version 5.76
	Changes up to version 5.78
	Changes up to version 5.83
	Changes up to version 5.88

	Appendix B: C errors and warnings
	Interpreting CC errors and warnings
	Warnings
	Warning messages

	Non-serious errors
	Serious errors
	Fatal errors
	System errors

	Appendix C: C++ errors and warnings
	‘Not implemented’ messages

	C function index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	C++ class index
	C
	F
	I
	M
	O
	S

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W

